Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087302    DOI: 10.1088/1674-1056/26/8/087302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-efficiency organic light-emitting diodes based on ultrathin blue phosphorescent modification layer

Yun-Ke Zhu(朱云柯), Jian Zhong(钟建), Shu-Ying Lei(雷疏影), Hui Chen(陈辉), Shuang-Shuang Shao(邵双双), Yu Lin(林宇)
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electron Science and Technology of China (UESTC), Chengdu 610054, China
Abstract  

Yellow organic light-emitting devices (YOLEDs) with a novel structure of ITO/MoO3(5 nm)/NPB(40 nm)/TCTA(15 nm)/CBP:(tbt)2Ir(acac)(x%)(25 nm)/FIrpic(y nm)/TPBi(35 nm)/Mg:Ag are fabricated. The ultrathin blue phosphorescent bis[(4,6-difluorophenyl)-pyridi-nato-N,C2\prime ](picolinate) iridium (III) (FIrpic) layer is regarded as a high-performance modification layer. By adjusting the thickness of FIrpic and the concentration of (tbt)2Ir(acac), a YOLED achieves a high luminance of 41618 cd/m2, power efficiency of 49.7 lm/W, current efficiency of 67.3 cd/A, external quantum efficiency (EQE) of 18%, and a low efficiency roll-off at high luminance. The results show that phosphorescent material of FIrpic plays a significant role in improving YOLED performance. The ultrathin FIrpic modification layer blocks excitons in EML. In the meantime, the high triplet energy of FIrpic (2.75 eV) alleviates the exciton energy transport from EML to FIrpic.

Keywords:  modification layer      ultrathin      YOLEDs      phosphorescence  
Received:  10 February 2017      Revised:  15 April 2017      Accepted manuscript online: 
PACS:  73.21.Ac (Multilayers)  
  78.60.Fi (Electroluminescence)  
  85.60.Jb (Light-emitting devices)  
  73.61.Ph (Polymers; organic compounds)  
Fund: 

Project supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 61675041 and 61605253), the Foundation for Innovation Research Groups of the NSFC (Grant No. 61421002), and the Fund from the Science & Technology Department of Sichuan Province, China (Grant No. 2016HH0027).

Corresponding Authors:  Jian Zhong     E-mail:  zhongjian@uestc.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Yun-Ke Zhu(朱云柯), Jian Zhong(钟建), Shu-Ying Lei(雷疏影), Hui Chen(陈辉), Shuang-Shuang Shao(邵双双), Yu Lin(林宇) High-efficiency organic light-emitting diodes based on ultrathin blue phosphorescent modification layer 2017 Chin. Phys. B 26 087302

[1] Jou J H, Hsieh C Y, Tseng J R, Peng S H, Jou Y C, Hong J H, Shen S M, Tang M C, Chen P C and Lin C H 2013 Adv. Funct. Mater. 23 2750
[2] Sun N, Wang Q, Zhao Y B, Chen Y H, Yang D Z, Zhao F C, Chen J S and Ma D G 2014 Adv. Mater. 26 1617
[3] Liu S M, Li B, Zhang L M, Song H and Jiang H 2010 Appl. Phys. Lett. 97 083304
[4] Zhao J, Yu J S, Liu S Q and Jiang Y D 2012 J. Lumin. 132 1994
[5] Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y and Adachi C 2009 Adv. Mater. 21 4802
[6] Yook K S, Jeon S O and Lee J Y 2010 J. Ind. Eng. Chem. 16 813
[7] Tsang S W, Tao Y and Lu Z H J 2011 Appl. Phys. 109 023711
[8] Huang Q L, Cui J, Veinot J G C, Yan H and Marks T J 2003 Appl. Phys. Lett. 82 331
[9] Jeon S O, Yook K S, Joo C W and Lee J Y 2010 Org. Electron. 11 881
[10] Su Z S, Li W L, Xu M L, Li T L, Wang D, Su W M, Niu J H, He H, Zhu J Z and Chu B J 2007 Physica D: Appl. Phys. 40 2783
[11] Nishide J, Nakanotani H, Hiraga Y and Adachi C 2014 Appl. Phys. Lett. 104 233304
[12] Zhao J, Yu J S, Hu Xiao, Hou M H, Jiang Y D 2012 Thin Solid Films 520 4003
[13] Zhang D D, Cai M G, Zhang Y G, Zhang D Q and Duan L 2015 ACS Appl. Mater. Inter. 7 28693
[14] Yoo S I, Yoon J A, Kim N H, Kim J W, Kang J S, Moon C B and Kim W Y 2015 J. Lumin. 160 346
[15] Xue K W, Han G G, Duan Y, Chen P, Yang Y Q, Yang D, Duan Y H, Wang X and Zhao Y 2015 Org. Electron. 18 84
[16] Wang Z J, Zhao J, Zhou C, Qi Y G and Yu J S 2017 Chin. Phys. B 26 047303
[17] Song W and Lee J Y J 2015 Physica D: Appl. Phys. 48 365106
[18] Divayana Y, Liu S W, Kyaw A K K and Sun X W 2011 Org. Electron. 12 1
[19] Wang X, Wang R, Zhou D and Yu J S 2016 Synth. Metals 214 50
[20] Lee J H, Cheng S H, Yoo S J, Shin H, Chang J H, Wu C I, Wong K T and Kim J J 2015 Adv. Funct. Mater. 25 3
[21] Shin H, Lee S, Kim K H, Moon C K, Yoo S J, Lee J H and Kim J J 2014 Adv. Mater. 26 27
[22] Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y and Adachi C 2009 Adv. Mater. 21 4802
[23] Li Y F, Li F, Zhang J H., Wang C L, Zhu S J, Yu H J, Wang Z H and Yang B 2010 Appl. Phys. Lett. 96 153305
[24] Okamoto S, Tanaka K, Jzumi Y, Adachi H, Yamaji T and Suzuki T 2001 Jpn. J. Appl. Phys. 40 L783
[1] Broadband visible light absorber based on ultrathin semiconductor nanostructures
Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英). Chin. Phys. B, 2020, 29(1): 014201.
[2] Single-layer broadband planar antenna using ultrathin high-efficiency focusing metasurfaces
Hai-Sheng Hou(侯海生), Guang-Ming Wang(王光明), Hai-Peng Li(李海鹏), Wen-Long Guo(郭文龙), Tang-jing Li(李唐景), Tong Cai(蔡通). Chin. Phys. B, 2017, 26(5): 057701.
[3] Crystallization behaviors of ultrathin Al-doped HfO2 amorphous films grown by atomic layer deposition
Xue-Li Ma(马雪丽), Hong Yang(杨红), Jin-Juan Xiang(项金娟), Xiao-Lei Wang(王晓磊), Wen-Wu Wang(王文武), Jian-Qi Zhang(张建齐), Hua-Xiang Yin(殷华湘), Hui-Long Zhu(朱慧珑), Chao Zhao(赵 超). Chin. Phys. B, 2017, 26(2): 027701.
[4] Manipulating magnetic anisotropies of Co/MgO(001) ultrathin films via oblique deposition
Syed Sheraz Ahmad, Wei He(何为), Jin Tang(汤进), Yong Sheng Zhang(张永圣), Bo Hu(胡泊), Jun Ye(叶军), Qeemat Gul, Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2016, 25(9): 097501.
[5] Image potential states mediated STM imaging of cobalt phthalocyanine on NaCl/Cu(100)
Qinmin Guo(郭秦敏), Zhihui Qin(秦志辉), Min Huang(黄敏), Vladimir N. Mantsevich , Gengyu Cao(曹更玉). Chin. Phys. B, 2016, 25(3): 036801.
[6] Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces
Xi Gao(高喜), Xing-Yang Yu(余行阳), Wei-Ping Cao(曹卫平), Yan-Nan Jiang(姜彦南), Xin-Hua Yu(于新华). Chin. Phys. B, 2016, 25(12): 128102.
[7] Annealing effect on magnetic anisotropy in ultrathin (Ga,Mn)As
Li Yan-Yong, Wang Hua-Feng, Cao Yu-Fei, Wang Kai-You. Chin. Phys. B, 2013, 22(2): 027504.
[8] Modeling of tunneling current in ultrathin MOS structure with interface trap charge and fixed oxide charge
Hu Bo, Huang Shi-Hua, Wu Feng-Min. Chin. Phys. B, 2013, 22(1): 017301.
[9] Formations and morphological stabilities of ultrathin CoSi2 films
Zhu Zhi-Wei, Gao Xin-Dong, Zhang Zhi-Bin, Piao Ying-Hua, Hu Cheng, Zhang David-Wei, Wu Dong-Ping. Chin. Phys. B, 2012, 21(8): 087304.
[10] Magnetic anisotropy and magnetization reversal of ultrathin iron films with in-plane magnetization on Si(111) substrates
Liu Hao-Liang, He Wei, Du Hai-Feng, Fang Ya-Peng, Wu Qiong, Zhang Xiang-Qun, Yang Hai-Tao, Cheng Zhao-Hua. Chin. Phys. B, 2012, 21(7): 077503.
[11] Dispersion compensation for an ultrathin metal film using LCD–CCD system
Dai Yu, Zhang Jian-Xu. Chin. Phys. B, 2012, 21(10): 104203.
[12] Surface plasmon–polaritons on ultrathin metal films
Quan Jun, Tian Ying, Zhang Jun, Shao Le-Xi. Chin. Phys. B, 2011, 20(4): 047201.
[13] Detailed analysis of ultrathin fluorescent red dye interlayer for organic photovoltaic cells
Zang Yue, Yu Jun-Sheng, Wang Na-Na, Jiang Ya-Dong. Chin. Phys. B, 2011, 20(1): 017202.
[14] Energy transfer probability in organic electrophosphorescence device with dopant
Dai Guo-Zhang, Li Hong-Jian, Pan Yan-Zhi, Dai Xiao-Yu, Xie Qiang. Chin. Phys. B, 2005, 14(12): 2590-2594.
[15] Femtosecond laser-induced long-lasting phosphorescence in Pr3+-doped ZnO-B2O3-SiO2 glass
Jiang Xiong-Wei, Zeng Hui-Dan, Zhu Cong-Shan, Qiu Jian-Rong. Chin. Phys. B, 2003, 12(12): 1386-1389.
No Suggested Reading articles found!