Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 064203    DOI: 10.1088/1674-1056/26/6/064203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Investigation of the nonlinear CPT spectrum of 87Rb and its application for large dynamic magnetic measurement

Chi Xu(徐迟)1,2, Shi-Guang Wang(王时光)2,3, Yong Hu(胡勇)2,3, Yan-Ying Feng(冯焱颖)2,3, Li-Jun Wang(王力军)1,2,3
1 Department of Physics, Tsinghua University, Beijing 100084, China;
2 Joint Institute for Measurement Science, Tsinghua University, Beijing 100084, China;
3 State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084, China
Abstract  

The coherent population trapping (CPT) phenomenon has found widespread application in quantum precision measurements. Various designs based on the narrow resonant spectrum corresponding to the linear Zeeman effect have been demonstrated to achieve high performance. In this article, the nonlinear Zeeman split of the CPT spectrum of 87Rb in the lin||lin setup is investigated. We observe re-split phenomenon for both magnetic sensitive and magnetic insensitive CPT resonant lines at a large magnetic field. The re-split in the magnetic sensitive lines raises a practical problem to magnetometers worked in the lin||lin setup while the other one shows a good potential for applications in large magnetic field. We propose a design based on the nonlinear split of the magnetic insensitive lines and test its performance. It provides a much larger measurement range compared to the linear one, offering an option for atomic magnetometers where a large dynamic range is preferred.

Keywords:  coherent population trapping      nonlinear Zeeman effect      large dynamic magnetometer     
Received:  27 December 2016      Published:  05 June 2017
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.60.+i (Zeeman and Stark effects)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61473166) and China Postdoctoral Science Foundation (Grant No. 014M560958).

Corresponding Authors:  Yan-Ying Feng, Li-Jun Wang     E-mail:  yyfeng@tsinghua.edu.cn;lwan@tsinghua.edu.cn

Cite this article: 

Chi Xu(徐迟), Shi-Guang Wang(王时光), Yong Hu(胡勇), Yan-Ying Feng(冯焱颖), Li-Jun Wang(王力军) Investigation of the nonlinear CPT spectrum of 87Rb and its application for large dynamic magnetic measurement 2017 Chin. Phys. B 26 064203

[1] Alipieva E, Andreeva C, Avramov L, Bevilaqua G, Biancala V, Borisova E, Breschi E, Cartaleva S, Dancheva Y, Gateva S, Karaulanov T, Lammegger R, Moi L, Petrov L, Petrov N, Slavov D, Taskova E, Todorov G, Windholz L and Yanev A 2005 Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) 13th International School on Quantum Electronics, September 20-24, 2004, Bourgas, Bulgaria, pp. 170-175
[2] Reigber C, Luhr H and Schwintzer P 2002 Advances in Space Research (Adv. Space Res.) Symposium of COSPAR Scientific Commission B held at the 33rd COSPAR Scientific Assembly, July, 2000, Warsaw, Poland, pp. 129-134
[3] Sheng D, Li S, Dural N and Romalis M V 2013 Phys. Rev. Lett. 110 160802
[4] Nabighian M N, Ander M E, Grauch V J S, Hansen R O, LaFehr T R, Li Y, Pearson W C, Peirce J W, Phillips J D and Ruder M E 2005 Geophysics 70 63ND
[5] Stahler M, Wynands R, Knappe S, Kitching J, Hollberg L, Taichenachev A and Yudin V 2002 Opt. Lett. 27 1472
[6] Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 Nature 422 596
[7] Kitching J, Knappe S, Shah V, Schwindt P, Griffith C, Jimenez R, Preusser J, Liew L A and Moreland J 2008 IEEE International Frequency Control Symposium, May 19-21, 2008, Honolulu, HI, USA, pp. 789-794
[8] Knappe S, Schwindt P, Gerginov V, Shah V, Brannon A, Lindseth B, Liew L A, Robinson H, Moreland J, Popovic Z, Hollberg Leo and Kitching J 2007 Proceedings of the Socity of Photo-OPtical Instrumentation Engineers (SPIE) 14th International School on Quantum Electronics on Laser Physics and Applications, Septemper 18-22, 2006, Sunny Beach, Bulgaria, p. 60403
[9] Vasilakis, G, Brown J M, Kornack T W and Romalis M V 2009 Phys. Rev. Lett. 103 261801
[10] Hu Y, Feng Y Y, Xu C, Xue H B and Sun L 2014 Appl. Opt. 53 2158
[11] Lenci L, Auyuanet A, Barreiro S, Valente P, Lezama A and Failache H 2014 Phys. Rev. A 89 043836
[12] Schwindt P, Knappe S, Shah V, Hollberg L, Kitching J and Liew L and Moreland J 2004 Appl. Phys. Lett. 85 6409
[13] Liu G B, Sun X P, Gu S H, Feng J W and Zhou X 2012 Physics 41 803 (in Chinese)
[14] Zhang F, Tian Y, Zhang Y and Gu S H 2016 Chin. Phys. B 25 094206
[15] Jau Y, Miron E, Post A, Kuzma, N and Happer W 2004 Phys. Rev. Lett. 93 160802
[16] Taichenachev A, Yudin V, Velichansky V and Zibrov S 2005 JETP Lett. 82 398
[17] Breit G and Rabi I 1931 Phys. Rev. 38 2082
[18] Steck D A http://steck.us/alkalidata/ (2010)
[19] Arimondo E, Inguscio M and Violino P 1977 Rev. Mod. Phys. 49 31
[20] Sun X L, Zhang J W, Cheng P F, Xu C, Zhao L and Wang L J 2016 Opt. Express 24 4532
[21] Levi F, Godone A, Vanier J, Micalizio S and Modugno G 2000 Eur. Phys. J. D 12 53
[1] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[2] Theoretical analysis of suppressing Dick effect in Ramsey-CPT atomic clock by interleaving lock
Xiao-Lin Sun(孙晓林), Jian-Wei Zhang(张建伟), Peng-Fei Cheng(程鹏飞), Ya-Ni Zuo(左娅妮), Li-Jun Wang(王力军). Chin. Phys. B, 2018, 27(2): 023101.
[3] Coherent population trapping magnetometer by differential detecting magneto-optic rotation effect
Fan Zhang(张樊), Yuan Tian(田原), Yi Zhang(张奕), Si-Hong Gu(顾思洪). Chin. Phys. B, 2016, 25(9): 094206.
[4] Image transfer through coherent population trapping based on an atomic ensemble
Zhen-Hai Han(韩振海), Dong-Sheng Ding(丁冬生). Chin. Phys. B, 2016, 25(12): 124201.
[5] Optical nuclear spin polarization in quantum dots
Ai-Xian Li(李爱仙), Su-Qing Duan(段素青), Wei Zhang(张伟). Chin. Phys. B, 2016, 25(10): 108506.
[6] Phase-controlled coherent population trapping in superconducting quantum circuits
Cheng Guang-Ling, Wang Yi-Ping, Chen Ai-Xi. Chin. Phys. B, 2015, 24(4): 044204.
[7] Integrated physics package of a chip-scale atomic clock
Li Shao-Liang, Xu Jing, Zhang Zhi-Qiang, Zhao Lu-Bing, Long Liang, Wu Ya-Ming. Chin. Phys. B, 2014, 23(7): 074302.
[8] Transient responses of transparency in a far-off resonant atomic system
Hu Zheng-Feng, Du Chun-Guang, Deng Jian-Liao, Wang Yu-Zhu. Chin. Phys. B, 2014, 23(5): 054204.
[9] Review of chip-scale atomic clocks based on coherent population trapping
Wang Zhong. Chin. Phys. B, 2014, 23(3): 030601.
[10] High contrast atomic magnetometer based on coherent population trapping
Yang Ai-Lin, Yang Guo-Qing, Xu Yun-Fei, Lin Qiang. Chin. Phys. B, 2014, 23(2): 027601.
[11] Dependence of the 85Rb coherent population trapping resonance characteristic on the pressure of N2 buffer gas
Qu Su-Ping, Zhang Yi, Gu Si-Hong. Chin. Phys. B, 2013, 22(9): 099501.
[12] Characterizing passive coherent population trapping resonance in cesium vapor cell filled with neon as buffer gas
Liu Zhi, Wang Jie-Ying, Diao Wen-Ting, He Jun, Wang Jun-Min. Chin. Phys. B, 2013, 22(4): 043201.
[13] Stable 85Rb micro vapour cells: fabrication based on anodic bonding and application in chip-scale atomic clocks
Su Juan, Deng Ke, Guo Deng-Zhu, Wang Zhong, Chen Jing, Zhang Geng-Min, Chen Xu-Zong. Chin. Phys. B, 2010, 19(11): 110701.
[14] Coherent spectroscopy of the 87RbFg=1→ Fe=0 closed transition
Wang Yu-Zhu, Wang Yi, Zhan Ming-Sheng. Chin. Phys. B, 2007, 16(4): 994-997.
[15] Photoionization properties of an atom with two autoionizing states
Guo Hong, Li Gao-Xiang, Peng Jin-Sheng. Chin. Phys. B, 2002, 11(7): 694-699.
No Suggested Reading articles found!