Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 054701    DOI: 10.1088/1674-1056/26/5/054701

Experimental investigation on underwater drag reduction using partial cavitation

Bao Wang(王宝)1, Jiadao Wang(汪家道)1, Darong Chen(陈大融)1, Na Sun(孙娜)1,2, Tao Wang(王涛)1,3
1 State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
2 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
3 Science Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100161, China

For underwater drag reduction, one promising idea is to form a continuous gas or discrete bubbly layer at the submerged surface. Owing to the lower viscosity of gas than of water, this could considerably reduce underwater drag by achieving slippage at the liquid-gas interface. This paper presents an experimental investigation on underwater drag reduction using partial cavitation. Dense hydrophobic micro-grooved structures sustain gas in the valleys, which can be considered as defects that weaken the strength of the water body. Therefore, partial cavities are easily formed at lower flow speeds, and the dense cavities connect to form a lubricating gas layer at the solid-liquid interface. The results indicate that the proposed method achieves drag reduction without any additional energy or gas-providing devices, which should stimulate the development of underwater vehicles.

Keywords:  underwater drag reduction      hydrophobic      transverse microgrooved surface      partial cavitation     
Received:  11 December 2016      Published:  05 May 2017
PACS: (Drag reduction)  
  47.55.Ca (Gas/liquid flows)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 51105223, 51075228, and 51605450) and the Tribology Science Fund of State Key Laboratory of Tribology of China (Grant No. SKLTKF15A02).

Corresponding Authors:  Jiadao Wang     E-mail:

Cite this article: 

Bao Wang(王宝), Jiadao Wang(汪家道), Darong Chen(陈大融), Na Sun(孙娜), Tao Wang(王涛) Experimental investigation on underwater drag reduction using partial cavitation 2017 Chin. Phys. B 26 054701

[1] Bechert D W, Bruse M, Hage W and Vander Hoeven J G T and Hoppe G 1997 J. Fluid. Mech. 338 59
[2] Wang Y, Yu B, Cao Z Z, Zou W Z and Yu G J 2012 Int. J. Heat Mass Tran. 55 4827
[3] Wang Y, Yu B and Sun S Y 2012 Chem. Eng. Technol. 35 668
[4] Walsh M J 1983 AIAA J. 21 485
[5] Rajabi H and Darvizeh A 2013 Chin. Phys. B 22 088702
[6] García-Mayoral R and Jiménez J 2011 Phil. Trans. R. Soc. A 369 1412
[7] Zhang D Y, Li Y Y, Han X, Li X A and Chen H W 2011 Chin. Sci. Bull. 56 938
[8] Wang Y, Yu B, Wu X and Wang P 2012 Int. J. Heat Mass Tran. 55 4849
[9] Wang Y, Shi H F, Fang B, Zakin J L and Yu B 2012 Exp. Heat Transfer 25 139
[10] Li F C, Cai W H, Zhang H N and Wang Y 2012 Chin. Phys. B 21 114701
[11] Mowla D and Naderi A 2006 Chem. Eng. Sci. 61 1549
[12] Yang S Q and Dou G 2010 J. Fluid Mech. 642 279
[13] Li F C, Wang L and Cai W H 2015 Chin. Phys. B 24 074071
[14] Yao Y, Lu C and Si T 2011 J. Hydrodynamic 23 65
[15] Gad-el-Hak M 1994 AIAA J. 32 1753
[16] Wang Y, Yu B, Wu X, Wang P, Li F C and Kawaguchi Y 2014 Adv. Mech. Eng. 6 574381
[17] Zheng X B, Jiang N and Zhang H 2016 Chin. Phys. B 25 014703
[18] Choi J, Jeon W P and Choi H 2006 Phys. Fluids 18 041702
[19] McHale G, Newton M I and Shirtcliffe N J 2010 Soft Matter 6 714
[20] Zheng L J, Wu X D, Luo Z and Wu D 2004 Chin. Sci. Bull. 49 1779
[21] Fang Y, Sun G, Wang T Q, Cong Q and Ren LQ 2007 Chin. Sci. Bull. 52 711
[22] Bixler G D and Bhushan B 2012 Soft Matter 8 11271
[23] Bhushan B 2012 Langmuir 28 1698
[24] Gogte S, Vorobieff P, Truesdell R, Mammoli A, Van Swol F, Shah P and Brinker C J 2005 Phys. Fluids 17 51701
[25] Tretheway D C and Meinhart C D 2002 Phys. Fluids 14 L9
[26] Crowdy D 2011 Phys. Fluids 23 072001
[27] Sakai M, Nakajima A and Fujishima A 2010 Chem. Lett. 39 482
[28] Poetes R, Holtzmann K, Franze K and Steiner U 2010 Phys. Rev. Lett. 105 166104
[29] Aljallis E, Sarshar M A, Datla R, Sikka V, Jones A and Choi C H 2013 Phys. Fluids 25 025103
[30] Govardhan R N, Srinivas G S, Asthana A and Bobji M S 2009 Phys. Fluids 21 052001
[31] Forsberg P, Nikolajeff F and Karlsson M 2011 Soft Matter 7 104
[32] Sun W Y and Kim C J 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems, January 20, 2013, Taipei, Taiwan p. 397
[33] Karatay E, Haase A S, Visser C W, Sun C, Lohse D, Tsai P A and Lammertink R G H 2013 P. Natl. Acad. Sci. 110 8422
[34] Sayyaadi H and Nematollahi M 2013 Sci. Iran 20 535
[35] McCORMICK M E 1973 Naval Eng. J. 85 11
[36] Lee C and Kim C J 2011 Phys. Rev. Lett. 106 014502
[37] Vakarelski I U, Marston J O, Chan D Y C and Thoroddsen S T 2011 Phys. Rev. Lett. 106 214501
[38] Joseph D D 1998 J. Fluid Mech. 366 367
[39] Mohammadi A and Floryan J M 2013 J. Fluid Mech. 725 23
[40] Xiang M, Cheung S C P, Tu J Y and Zhang W H 2011 Ocean Eng. 38 2023
[41] Wang B, Wang J, Dou Z and Chen D 2014 Ocean Eng. 79 58
[42] Wang B, Wang J D and Chen D R 2014 Chem. Lett. 43 646
[43] Ding B, Ogawa T and Kim J 2008 Thin Solid Films 516 2495
[44] Larmour I A, Bell S E J and Saunders G C 2007 Angew. Chem. 119 1740
[1] The properties of surface nanobubbles formed on different substrates
Zheng-Lei Zou(邹正磊), Nan-Nan Quan(权楠楠), Xing-Ya Wang(王兴亚), Shuo Wang(王硕), Li-Min Zhou(周利民), Jun Hu(胡钧), Li-Juan Zhang(张立娟), Ya-Ming Dong(董亚明). Chin. Phys. B, 2018, 27(8): 086803.
[2] Hydrophobic nanochannel self-assembled by amphipathic Janus particles confined in aqueous nano-space
Gang Fang(方钢), Nan Sheng(盛楠), Tan Jin(金坦), Yousheng Xu(许友生), Hai Sun(孙海), Jun Yao(姚军), Wei Zhuang(庄巍), Haiping Fang(方海平). Chin. Phys. B, 2018, 27(3): 030505.
[3] Modulation and control of DNA charge inversion
Yan-Wei Wang(王艳伟), Guang-Can Yang(杨光参). Chin. Phys. B, 2017, 26(12): 128706.
[4] Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2016, 25(6): 066401.
[5] Gas adsorption and accumulation on hydrophobic surfaces: Molecular dynamics simulations
Luo Qing-Qun, Yang Jie-Ming. Chin. Phys. B, 2015, 24(9): 096801.
[6] Residual occurrence and energy property of proteins in HNP model
Jiang Zhou-Ting, Dou Wen-Hui, Shen Yu, Sun Ting-Ting, Xu Peng. Chin. Phys. B, 2015, 24(11): 116802.
[7] Ordered silicon nanorod arrays with controllable geometry and robust hydrophobicity
Wang Zi-Wen, Cai Jia-Qi, Wu Yi-Zhi, Wang Hui-Jie, Xu Xiao-Liang. Chin. Phys. B, 2015, 24(1): 017802.
[8] Molecular dynamics simulations of the nano-droplet impact process on hydrophobic surfaces
Hu Hai-Bao, Chen Li-Bin, Bao Lu-Yao, Huang Su-He. Chin. Phys. B, 2014, 23(7): 074702.
[9] Superamphiphobic, light-trapping FeSe2 particles with a micro-nano hierarchical structure obtained by an improved solvothermal method
Yu Jing, Wang Hui-Jie, Shao Wei-Jia, Xu Xiao-Liang. Chin. Phys. B, 2014, 23(1): 016803.
[10] Fabrication of pillar-array superhydrophobic silicon surface and thermodynamic analysis on the wetting state transition
Liu Si-Si, Zhang Chao-Hui, Zhang Han-Bing, Zhou Jie, He Jian-Guo, Yin Heng-Yang. Chin. Phys. B, 2013, 22(10): 106801.
[11] A facile way to fabricate aluminum sheet with superhydrophobic and self-cleaning properties
Yang Zhou, Wu Yi-Zhi, Ye Yi-Fan, Gong Mao-Gang, Xu Xiao-Liang. Chin. Phys. B, 2012, 21(12): 126801.
[12] Superhydrophobic surfaces via controlling the morphology of ZnO micro/nano complex structure
Gong Mao-Gang, Xu Xiao-Liang, Yang Zhou, Liu Yan-Song, Liu Ling. Chin. Phys. B, 2010, 19(5): 056701.
[13] Wettability and formation mechanism of ZnO micro-spheres composed film
Yang Zhou, Xu Xiao-Liang, Gong Mao-Gang, Liu Ling, Liu Yan-Song. Chin. Phys. B, 2010, 19(12): 126103.
[14] ZnO micro-nano composite hydrophobic film prepared bythree-step method
Ma Kai, Li Hua, Zhang Han, Xu Xiao-Liang, Gong Mao-Gang, Yang Zhou. Chin. Phys. B, 2009, 18(5): 1942-1946.
[15] Statistical interior properties of globular proteins
Jiang Zhou-Ting, Zhang Lin-Xi, Sun Ting-Ting, Wu Tai-Quan. Chin. Phys. B, 2009, 18(10): 4580-4590.
No Suggested Reading articles found!