Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 050203    DOI: 10.1088/1674-1056/26/5/050203
GENERAL Prev   Next  

Numerical analysis of a dual-pass pumping laser with weak absorption

Guang-Ju Zhang(张光举), Ma-Li Gong(巩马理), Wen-Qi Zhang(张文启)
State Key Laboratory of Tribology, Center for Photonics and Electronics, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Abstract  A model for a laser with dual-pass pumping is established, and an equation expressing the mode matching for this structure is presented. Through the numerical analysis of this equation, under the conditions of weak-absorption and effective absorption efficiency, the optimum radius of the pump beam waist as well as the optimum location is fitted to simple formulas, considering the quality of the pump beam, absorption coefficient, and beam waist of the cavity mode. Using these formulas, the laser with dual-pass pumping could be optimized to obtain a high slope efficiency. To test the utility of this model, an Nd:YVO4 laser with dual-pass pumping and weak-absorption was built and optimized according to the results of the calculation. A good agreement between the results of the calculations and the experiment verified the model and the numerical analysis.
Keywords:  dual-pass pimping      weak absorption      high efficiency      overlap     
Received:  14 October 2016      Published:  05 May 2017
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  42.55.-f (Lasers)  
  42.60.By (Design of specific laser systems)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
Corresponding Authors:  Ma-Li Gong     E-mail:

Cite this article: 

Guang-Ju Zhang(张光举), Ma-Li Gong(巩马理), Wen-Qi Zhang(张文启) Numerical analysis of a dual-pass pumping laser with weak absorption 2017 Chin. Phys. B 26 050203

[1] Koechner W 2005 Solid State Laser Engineering, 5th edn. (New York: Springer-Verlag) pp. 105-106
[2] Laporta P and Brussard M 1991 IEEE J. Quantum Electron. 27 2319
[3] Chen Y F, Liao T S, Kao C F, Huang T M, Lin K H and Wang S C 1996 IEEE J. Quantum Electron. 32 517
[4] Hajiesmaeilbagi F, Koohian A and Mahdizadeh M 2002 J. Opt. A 4 52
[5] Shayeganrad G and Mashhadi L 2008 J. Opt. A 47 619
[6] Zhang W, Wang F, Liu Q and Gong M 2016 Chin. Phys. B 25 024207
[7] Lupei V, Pavel N and Taira T 2002 Appl. Phys. Lett. 80 4309
[8] Lupei V, Pavel N and Taira T 2002 Appl. Phys. Lett. 81 2677
[9] Frede M, Wilhelm R and Kracht D 2016 Opt. Lett. 31 3618
[10] Pavel N, Lupei V, Saikawa J, Taira T and Kan H 2006 Appl. Phys. B 82 599
[11] Pavel N, Lupei V and Taira V 2005 Opt. Express 13 7948
[12] Lee H, Byeon S and Lukashev A 2012 Opt. Lett. 37 1160
[13] Ding X, Chen N, Sheng Q, Yu X Y, Xu X Y, Wen W Q, Zhou R, Wang P and Yao J Q 2009 Chin. Phys. Lett. 26 094207
[14] Gao J, Dai X, Zhang L and Wu X 2013 Laser Phys. Lett. 10 015802
[15] Lu Y, Xia J and Zhang X 2010 Laser Phys. 20 766
[16] Goldring S and Lavi R 2008 Opt. Lett. 33 669
[17] Sangla D, Balembois F and Georges P 2009 Opt. Express 17 10091
[18] Ding X, Yin S J, Shi C P, Li X, Li B, Sheng Q, Yu X Y, Wen W Q and Yao J Q 2011 Opt. Express 19 14315
[19] Lin H, Li J and Liang X 2012 Opt. Lett. 37 2634
[20] McDonagh L and Wallenstein R 2006 Opt. Lett. 31 3297
[21] Sangla D, Castaing M, Balembois F and Georges P 2009 Opt. Lett. 34 2159
[22] Kim J, Mackenzie J, Hayes J and Clarkson W 2012 Opt. Lett. 37 1463
[23] Zhang X, Liu J, Shen D, Yang X, Tang D and Fan D 2013 IEEE Photon. Tech. Lett. 25 1294
[24] Sha J, Shen D, Zhao T and Yang X 2013 Laser Phys. Lett. 10 075801
[25] Lancaster D, Stevens V, Michaud-Belleau V, Gross S, Fuerbach A and Monro T 2015 Opt. Express 23 32664
[26] Yao B, Cui Z, Wang J, Duan X, Dai T, Du Y, Yuan J and Liu W 2015 Laser Phys. Lett. 12 025002
[27] Yuan J H, Yao B Q, Duan X M, Shen Y J, Cui Z, Yu K K, Li J and Pan Y B 2014 Chin. Phys. Lett. 31 124205
[28] Fan L, Zhao W Q, Qiao X, Xia C Q, Wang L C, Fan H B and Shen M Y 2016 Chin. Phys. B 25 114207
[29] Li B, Lei P, Sun B and Bai Y B 2017 Chin. Phys. B 26 024206
[30] Bjurshagen S 2015 Diode-pumped Rare-earth-doped Quasi-three-level Lasers (Ph.D. Dissertation) (Stockholm: Royal Institute of Technology)
[31] Peng X P, Liu Q, Fu X, Chen H, Gong M and Wang D 2009 Opt. Express 17 21956
[32] Brown D C, Nelson R and Billings L 1997 Appl. Opt. 36 1879
[33] Hodgson H, Griswold K, Jordan W, Knapp S L, Peirce A A, Pohaiski C C, Cheng E, Cole J, Dudley D R, Petersen A B and Nighanjr W L 1999 Proc. SPIE 3611, Laser Resonators II, May 24, 1999, San Jose, USA, p. 119
[1] Detecting overlapping communities based on vital nodes in complex networks
Xingyuan Wang(王兴元), Yu Wang(王宇), Xiaomeng Qin(秦小蒙), Rui Li(李睿), Justine Eustace. Chin. Phys. B, 2018, 27(10): 100504.
[2] High efficiency terahertz diffraction grating with trapezoidal elements
Yin-Zhong Wu(巫殷忠), Quan-Pin Fan(范全平), Qiang-Qiang Zhang(张强强), Lai Wei(魏来), Yong Chen(陈勇), Zu-Hua Yang(杨祖华), Lei-Feng Cao(曹磊峰). Chin. Phys. B, 2017, 26(12): 124203.
[3] A local fuzzy method based on “p-strong” community for detecting communities in networks
Yi Shen(沈毅), Gang Ren(任刚), Yang Liu(刘洋), Jia-Li Xu(徐家丽). Chin. Phys. B, 2016, 25(6): 068901.
[4] Quantum process discrimination with information from environment
Yuan-Mei Wang(王元美), Jun-Gang Li(李军刚), Jian Zou(邹健), Bao-Ming Xu(徐宝明). Chin. Phys. B, 2016, 25(12): 120302.
[5] Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency
Hui-Jing Du(杜会静), Wei-Chao Wang(王韦超), Jian-Zhuo Zhu(朱键卓). Chin. Phys. B, 2016, 25(10): 108802.
[6] Detecting overlapping communities in networks via dominant label propagation
Sun He-Li, Huang Jian-Bin, Tian Yong-Qiang, Song Qin-Bao, Liu Huai-Liang. Chin. Phys. B, 2015, 24(1): 018703.
[7] Pure blue and white light electroluminescence in a multilayer organic light-emitting diode using a new blue emitter
Wei Na, Guo Kun-Ping, Zhou Peng-Chao, Yu Jian-Ning, Wei Bin, Zhang Jian-Hua. Chin. Phys. B, 2014, 23(7): 077802.
[8] High-efficiency S-band harmonic tuning GaN amplifier
Cao Meng-Yi, Zhang Kai, Chen Yong-He, Zhang Jin-Cheng, Ma Xiao-Hua, Hao Yue. Chin. Phys. B, 2014, 23(3): 037305.
[9] Effect of the nonlinearity of CCD in Fourier transform profilometry on spectrum overlapping and measurement accuracy
Qiao Nao-Sheng, Zou Bei-Ji. Chin. Phys. B, 2013, 22(1): 014203.
[10] One-range addition theorems for generalized integer and noninteger μ Coulomb, and exponential type correlated interaction potentials with hyperbolic cosine in position, momentum, and four-dimensional spaces
I. I. Guseinov. Chin. Phys. B, 2012, 21(6): 063101.
[11] Efficient top-emitting white organic light emitting device with an extremely stable chromaticity and viewing-angle
Shao Ming, Guo Xu, Chen Shu-Fen, Fan Qu-Li, Huang Wei. Chin. Phys. B, 2012, 21(10): 108507.
[12] Nonequilibrium dynamics in two-dimensional Ising spin glass
Zhang Kai-Cheng, Zhu Yan. Chin. Phys. B, 2011, 20(4): 047501.
[13] Method for fitting crystal field parameters and the energy level fitting for Yb3+ in crystal Sc2O3
Zhang Qing-Li, Ning Kai-Jie, Xiao Jin, Ding Li-Hua, Zhou Wen-Long, Liu Wen-Peng, Yin Shao-Tang, Jiang Hai-He. Chin. Phys. B, 2010, 19(8): 087501.
[14] Numerical exploration of coherent excitation in three-level ladder systems
Li Xiao-Hong, Zhang Xian-Zhou, Yang Xiang-Dong. Chin. Phys. B, 2007, 16(7): 1947-1951.
[15] Topological susceptibility from overlap fermion
Ying He-Ping, Zhang Jian-Bo. Chin. Phys. B, 2003, 12(12): 1374-1377.
No Suggested Reading articles found!