Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 124205    DOI: 10.1088/1674-1056/26/12/124205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Parallel generation of 31 tripartite entangled states based on optical frequency combs

Jing Zhang(张静)1,2,3, Yan-Fang Wang(王艳芳)1,2, Xiao-Yu Liu(刘晓宇)1,2, Rong-Guo Yang(杨荣国)1,2,3
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China;
2. College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China;
3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  

Quantum entangled states, especially those having particular properties, are key resources for quantum information and quantum computation. In this paper, we put forward a new scheme to produce 31 continuous-variable (CV) tripartite entanglement fields based on three optical frequency combs via cascade nonlinear processes in an optical parametric cavity, and investigate the spectral characteristics of three frequency combs. The center wavelengths of the three combs are designed as 852 nm, 780 nm (atomic transition lines), and 1550 nm (fiber communication wavelength). The positivity under partial transposition (PPT) criterion, which is sufficient and necessary, is used to evaluate the entanglement in each group of comb lines. This scheme is experimentally feasible and valuable for constructing quantum information networks in future.

Keywords:  quantum optics      nonlinear optics      quantum fluctuation     
Received:  05 June 2017      Published:  05 December 2017
PACS:  42.50.-p (Quantum optics)  
  42.65.-k (Nonlinear optics)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11504218, 11634008, 11674203, 11574187, 61108003, and 61227902), and the National Key Research and Development Program of China (Grant No. 2016YFA0301404).

Corresponding Authors:  Jing Zhang     E-mail:  zjj@sxu.edu.cn

Cite this article: 

Jing Zhang(张静), Yan-Fang Wang(王艳芳), Xiao-Yu Liu(刘晓宇), Rong-Guo Yang(杨荣国) Parallel generation of 31 tripartite entangled states based on optical frequency combs 2017 Chin. Phys. B 26 124205

[1] Johnson T J, Bartlett S D and Sanders B C 2012 Nat. Commun. 8 1083
[2] Jing J T, Zhang J, Yan Y, Zhao F G, Xie C D and Peng K C 2003 Phys. Rev. Lett. 90 167903
[3] Madsen L S, Usenko V C, Lassen M, Filip R and Andersen U L 2012 Nat. Commun. 8 1083
[4] van Loock P, Weedbrook C and Gu M 2014 Phys. Rev. Lett. 113 023602
[5] Ma Y H, Yang G H, Mu Q X and Zhou L 2009 J. Opt. Soc. Am. B 26(4) 713-717
[6] Nha H 2012 Phys. Rev. A 77 062328
[7] van Loock P and Braunstein S L 2000 Phys. Rev. Lett. 84 3482-3485
[8] Aoki T, Takei N, Yonezawa H K, Hiraoka T and Furusawa A 2003 Phys. Rev. A 91 080404
[9] Su X L, Tan A H, Jia X J, Zhang J, Xie C D and Peng K C 2007 Phys. Rev. Lett. 98 070502
[10] Yang R G, Wang J J, Zhang J and Sun H X 2016 Chin, Phys.B 25 074208
[11] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706-709
[12] Li X Y, Pan Q, Jing J T, Zhang J, Xie C D and Peng K C 2002 Phys. Rev. Lett. 88 047904
[13] Allevi A, BondaniMand ParisMG A and Andreoni A 2008 Phys. Rev. A 78 063801
[14] Tan A H, Xie C D and Peng K C 2012 Phys. Rev. A 85 013819
[15] Yang R G, Zhai S Q, liu K, Zhang J X and Gao J R 2010 J. Opt. Soc. Am. B 27 2721
[16] Li T Y, Mitazaki R, Kasai K, Okada-Shudo Y, Watanabe M and Zhang Y 2015 Phys. Rev. A 91 023833
[17] Qin Z Z, Gao L M, Wang H L, Marino A M, Zhang W P and Jing J T 2014 Phys. Rev. Lett. 113 023602
[18] Cai Y, Feng J L, Wang H L, Ferrini G, Xu X Y, Jing J T and Treps N 2015 Phys. Rev. A 91 013843
[19] Cao L M, Qi J, Du J J and Jing J T 2007 Phys. Rev. Lett. 109 253604
[20] Wang H L, Fabre C and Jing J T 2017 Phys. Rev. A 95 051802
[21] Zheng Z, Wang H L, Cheng B and Jing J T 2017 Opt. Lett. 42 2754
[22] Jia X J, Yan Z H, Duan Z Y, Su X L, Wang H, Xie C D and Peng K C 2007 Phys. Rev. Lett. 109 253604
[23] Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R and Pfister O 2011 Phys. Rev. Lett. 107 030505
[24] Yang R G, Zhang J, Zhai S Q, Liu K, Zhang J X and Gao J R 2014 Phys. Rev. Lett. 112 120505
[25] Yang R G, Zhang J, Zhai Z H, Zhai S Q, Liu K and Gao J R 2015 Opt. Express 23 21323-21333
[26] Chen M, Menicucci N C and Pfister O 2014 Phys. Rev. Lett. 112 120505
[27] Pooser R and Jing J T 2014 Phys. Rev. A 90 043841
[28] Yang R G, Wang J J, Zhang J, Liu K and Gao J R 2016 J. Opt. Soc. Am. B 33 2424
[29] Lifshitz R, Arie A and Bahabad A 2005 Phys. Rev. Lett. 95 133901
[30] Raymer M G and Noh J 2005 Phys. Rev. A 72 023825
[31] Coelho A S, Barbosa F A S, Cassemiro K N, Villar A S, Martinelli M and Nussenzveig P 2009 Science 326 823
[32] Simon R 2009 Phys. Rev. Lett. 84 2726
[33] Vollmer C E, Schulze D, Eberle T, Handchen V, Fiurasek J and Schnabel R 2013 Phys. Rev. Lett. 111 230505
[1] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[2] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[3] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[4] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[5] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[6] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[7] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[8] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[9] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[10] Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector
Jin-Rong Wang(王锦荣), Hong-Yu Zhang(张宏宇), Zi-Lin Zhao(赵子琳), and Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(12): 124207.
[11] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[12] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[13] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[14] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[15] Controllable transmission of vector beams in dichroic medium
Yun-Ke Li(李云珂), Jin-Wen Wang(王金文), Xin Yang(杨欣), Yun Chen(陈云), Xi-Yuan Chen(陈熙远), Ming-Tao Cao(曹明涛), Dong Wei(卫栋), Hong Gao(高宏), Fu-Li Li(李福利). Chin. Phys. B, 2019, 28(1): 014205.
No Suggested Reading articles found!