Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 053601    DOI: 10.1088/1674-1056/25/5/053601

Structural optimization and segregation behavior of quaternary alloy nanoparticles based on simulated annealing algorithm

Xin-Ze Lu(陆欣泽)1, Gui-Fang Shao(邵桂芳)2, Liang-You Xu(许两有)2, Tun-Dong Liu(刘暾东)2, Yu-Hua Wen(文玉华)1
1. Department of Physics, Xiamen University, Xiamen 361005, China;
2. Department of Automation, Xiamen University, Xiamen 361005, China
Abstract  Alloy nanoparticles exhibit higher catalytic activity than monometallic nanoparticles, and their stable structures are of importance to their applications. We employ the simulated annealing algorithm to systematically explore the stable structure and segregation behavior of tetrahexahedral Pt-Pd-Cu-Au quaternary alloy nanoparticles. Three alloy nanoparticles consisting of 443 atoms, 1417 atoms, and 3285 atoms are considered and compared. The preferred positions of atoms in the nanoparticles are analyzed. The simulation results reveal that Cu and Au atoms tend to occupy the surface, Pt atoms preferentially occupy the middle layers, and Pd atoms tend to segregate to the inner layers. Furthermore, Au atoms present stronger surface segregation than Cu ones. This study provides a fundamental understanding on the structural features and segregation phenomena of multi-metallic nanoparticles.
Keywords:  alloy nanoparticle      simulated annealing algorithm      structural stability      segregation     
Received:  09 December 2015      Published:  05 May 2016
PACS:  36.40.-c (Atomic and molecular clusters)  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  52.65.Pp (Monte Carlo methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51271156, 11474234, and 61403318) and the Natural Science Foundation of Fujian Province of China (Grant Nos. 2013J01255 and 2013J06002).
Corresponding Authors:  Gui-Fang Shao     E-mail:

Cite this article: 

Xin-Ze Lu(陆欣泽), Gui-Fang Shao(邵桂芳), Liang-You Xu(许两有), Tun-Dong Liu(刘暾东), Yu-Hua Wen(文玉华) Structural optimization and segregation behavior of quaternary alloy nanoparticles based on simulated annealing algorithm 2016 Chin. Phys. B 25 053601

[1] Murray R W 2008 Chem. Rev. 108 2688
[2] Zhou Z Y, Tian N, Li J T, Broadwell I and Sun SG 2011 Chem. Soc. Rev. 40 4167
[3] Wu W K, Zhang L N, Ren H R, Zhang K, Li H and He Y Z 2015 Phys. Chem. Chem. Phys. 17 13380
[4] Deng L, Hu W Y, Deng H Q and Xiao S F 2010 J. Phys. Chem. C 114 11026
[5] Huang R, Wen Y H, Zhu Z Z and Sun S G 2012 J. Phys. Chem. C 116 8664
[6] Yun K, Cho Y H, Cha P R, Lee J, Nam H S, Oh J S, Choi J H and Lee S C 2012 Acta Mater. 60 4908
[7] Shao G F, Zheng W X, Tu Na Na, Liu T D and Wen Y H 2015 Acta Phys. Sin. 64 013602 (in Chinese)
[8] Gao X X, Jia Y H, Li G P, Cho S J and Kim H 2011 Chin. Phys. Lett. 28 033601
[9] Chen M S, Cai Y, Yan Z, Gath K K, Axnanda S and Wayne G D 2007 Surf. Sci. 601 5326
[10] Pal U, Garcia-Serrano J, Casarrubias-Segura G, Koshizaki N, Sasaki T and Terahuchi S 2004 Sol. Energ. Mat Sol. C 81 339
[11] Sekhon J S and Verma S S 2011 Plasmonics 6 311
[12] Wang L and Yamauchi Y 2010 J. Am. Chem. Soc. 132 13636
[13] Guo S J, Zhang S, Sun X L and Sun S H 2011 J. Am. Chem. Soc. 133 15354
[14] Zhu L S and Zhao S J 2014 Chin. Phys. B 23 063601
[15] Lumley R N, Morton A J and Polmear I J 2002 Acta Mater. 50 3597
[16] Cao P, Zhang M L, Han W, Yan Y D and Chen L J 2013 T. Nonferr. Metal. Soc. 23 861
[17] Mazumder V, Chi M F, More K L, and Sun S H 2010 Angew. Chem. Int. Edit. 49 9368
[18] Iglesias O and Labarta A 2001 Phys. Rev. B 63 184416
[19] Qin L J, Zhang Y H, Huang S P, Tian H P and Wang P 2010 Phys. Rev. B 82 075413
[20] Yuge K 2010 J. Phys.: Condens. Matter 22 245401
[21] Cho S H 2005 Phys. Med. Biol. 50 N163
[22] Guo J Y, Xu C X, Hu A M, Oakes K D and Sheng F Y 2012 J. Phys. Chem. Solids 73 1350
[23] Radillo-Diaz A, Coronado Y, Péreza L A and Garzón I L 2009 Eur. Phys. J. D 52 127
[24] Paz-Borbo'n L O, Guptab A and Johnston R L 2008 J. Mater. Chem. 18 4154
[25] Bruma A, Ismail R, Paz-Borbón L O, Arslan H, Barcaro G, Fortunelli A, Lia Z Y and Johnston R L 2013 Nanoscale 5 646
[26] Yu J M, Chen Z H, Ni Y and Li Z X 2012 Hum. Reprod. 27 25
[27] Liu T D, Zheng J W, Shao G, Fan T E and Wen Y H 2015 Chin. Phys. B 24 033601
[28] Wen Y H, Zhang Y, Zheng J C, Zhu Z Z and Sun S G 2009 J. Phys. Chem. C 113 20611
[29] Ikeda H, Qi Y, Cagin T, Samwer K, Johnson W L and Goddard W A 1999 Phys. Rev. Lett. 82 2900
[30] Sankaranarayanan S K R S, Bhethanabotla V R and Joseph B 2005 Phys. Rev. B 71 195415
[31] Kimura Y, Qi Y, Cagin T and Goddard III W 1998 Technical Report (Vol. 3) (Pasadena: Caltech ASCI) pp. 1-29
[32] Tian N, Zhou Z Y, Sun S G, Ding Y and Wang Z L 2007 Science 316 732
[33] Metropolis N, Rosenbluth A W, Rosenbluth M N and Teller A H 1953 J. Chem. Phys. 21 1087
[34] Kirkpatrick S, Gelatt C D Jr. and Vecchi M P 1983 Science 220 671
[35] Li Z W, Kong X S, Liu W, Liu C S and Fang Q F 2014 Chin. Phys. B 23 106107
[1] Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation
Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊). Chin. Phys. B, 2020, 29(6): 066104.
[2] Structural stability and vibrational characteristics of CaB6 under high pressure
Mingkun Liu(刘明坤), Can Tian(田灿), Xiaoli Huang(黄晓丽), Fangfei Li(李芳菲), Yanping Huang(黄艳萍), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(6): 068101.
[3] Segregation behavior and embrittling effect of lanthanide La, Ce, Pr, and Nd at Σ3(111) tilt symmetric grain boundary in α-Fe
Jinli Cao(曹金利), Wen Yang(杨文), Xinfu He(贺新福). Chin. Phys. B, 2019, 28(12): 126802.
[4] Effect of nickel segregation on CuΣ9 grain boundary undergone shear deformations
Xiang-Yue Liu(刘湘月), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(6): 063103.
[5] Direct characterization of boron segregation at random and twin grain boundaries
Xiang-Long Li(李向龙), Ping Wu(吴平), Rui-Jie Yang(杨锐杰), Shi-Ping Zhang(张师平), Sen Chen(陈森), Xue-Min Wang(王学敏), Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2017, 26(8): 086802.
[6] DEM simulation of granular segregation in two-compartment system under zero gravity
Wenguang Wang(王文广), Zhigang Zhou(周志刚), Jin Zong(宗谨), Meiying Hou(厚美瑛). Chin. Phys. B, 2017, 26(4): 044501.
[7] Segregations and desorptions of Ge atoms in nanocomposite Si1-xGex films during high-temperature annealing
Yu Wang(汪煜), Meng Yang(杨濛), Gang Wang(王刚), Xiao-Xu Wei(魏晓旭), Jun-Zhuan Wang(王军转), Yun Li(李昀), Ze-Wen Zou(左则文), You-Dou Zheng(郑有炓), Yi Shi(施毅). Chin. Phys. B, 2017, 26(12): 126801.
[8] Effects of rapid thermal annealing on crystallinity and Sn surface segregation of Ge1-xSnx films on Si (100) and Si (111)
Yuan-Hao Miao(苗渊浩), Hui-Yong Hu(胡辉勇), Jian-Jun Song(宋建军), Rong-Xi Xuan(宣荣喜), He-Ming Zhang(张鹤鸣). Chin. Phys. B, 2017, 26(12): 127306.
[9] Segregation behavior of magnetic ions in continuous flowing solution under gradient magnetic field
Bing Ji(冀冰), Ping Wu(吴平), Han Ren(任菡), Shiping Zhang(张师平), Abdul Rehman, Li Wang(王立). Chin. Phys. B, 2016, 25(7): 074704.
[10] Synthesis of graphene-supported monodisperse AuPd bimetallic nanoparticles for electrochemical oxidation of methanol
Xiao Hong-Jun, Shen Cheng-Min, Shi Xue-Zhao, Yang Su-Dong, Tian Yuan, Lin Shao-Xiong, Gao Hong-Jun. Chin. Phys. B, 2015, 24(7): 078109.
[11] Morphology and structural stability of Pt-Pd bimetallic nanoparticles
Liu Tun-Dong, Zheng Ji-Wen, Shao Gui-Fang, Fan Tian-E, Wen Yu-Hua. Chin. Phys. B, 2015, 24(3): 033601.
[12] Structural stability and electronic properties of carbon star lattice monolayer
Fan Xue-Lan, Niu Chun-Yao, Wang Xin-Quan, Wang Jian-Tao, Li Han-Dong. Chin. Phys. B, 2014, 23(9): 096104.
[13] Segregation of alloying atoms at a tilt symmetric grain boundary in tungsten and their strengthening and embrittling effects
Li Zhi-Wu, Kong Xiang-Shan, Liu-Wei, Liu Chang-Song, Fang Qian-Feng. Chin. Phys. B, 2014, 23(10): 106107.
[14] Structural stability and electrical properties of AlB2-type MnB2 under high pressure
Meng Xiang-Xu, Fan Jing, Bao Kuo, Li Fang-Fei, Huang Xiao-Li, Li Yan, Tian Fu-Bo, Duan De-Fang, Jin Xi-Lian, Zhu Pin-Wen, He Zhi, Zhou Qiang, Gao Chun-Xiao, Liu Bing-Bing, Cui Tian. Chin. Phys. B, 2014, 23(1): 016102.
[15] Surface segregation of InGaAs films by the evolution of reflection high-energy electron diffraction patterns
Zhou Xun,Luo Zi-Jiang,Guo Xiang,Zhang Bi-Chan,Shang Lin-Tao,Zhou Qing,Deng Chao-Yong,Ding Zhao. Chin. Phys. B, 2012, 21(4): 046103.
No Suggested Reading articles found!