Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 036501    DOI: 10.1088/1674-1056/25/3/036501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Density functional theory study of structural, electronic, and thermal properties of Pt, Pd, Rh, Ir, Os and PtPdX (X = Ir, Os, and Rh) alloys

Shabbir Ahmed1, Muhammad Zafar1, M Shakil2, M A Choudhary1
1. Simulation Laboratory, Department of Physics, the Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
2. Department of Physics, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan
Abstract  The structural, electronic, mechanical, and thermal properties of Pt, Pd, Rh, Ir, Os metals and their alloys PtPdX (X = Ir, Os and Rh) are studied systematically using ab initio density functional theory. The groundstate properties such as lattice constant and bulk modulus are calculated to find the equilibrium atomic position for stable alloys. The electronic band structure and density of states are calculated to study the electronic behavior of metals on making their alloys. The electronic properties substantiate the metallic behavior for all studied materials. The firstprinciples density functional perturbation theory as implemented in quasi-harmonic approximation is used for the calculations of thermal properties. We have calculated the thermal properties such as the Debye temperature, vibrational energy, entropy and constant-volume specific heat. The calculated properties are compared with the previously reported experimental and theoretical data for metals and are found to be in good agreement. Calculated results for alloys could not be compared because there is no data available in the literature with such alloy composition.
Keywords:  electronic      structural and thermal properties      platinum group metals  
Received:  14 May 2015      Revised:  14 November 2015      Accepted manuscript online: 
PACS:  61.50.-f (Structure of bulk crystals)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Be (Transition metals and alloys)  
Corresponding Authors:  Shabbir Ahmed     E-mail:  shabir_sehr@hotmail.com

Cite this article: 

Shabbir Ahmed, Muhammad Zafar, M Shakil, M A Choudhary Density functional theory study of structural, electronic, and thermal properties of Pt, Pd, Rh, Ir, Os and PtPdX (X = Ir, Os, and Rh) alloys 2016 Chin. Phys. B 25 036501

[1] Savitskii E M 1989 Handbook of Precious Metals (New York: Hemisphere Publishing Corporation)
[2] Cawkwell M J, Nguyen-Manh D, Woodward C, Pettifor D G and Vitek V 2005 Science 309
[3] Stevanovic V, Sljivancanin Z and Balderesch A 2007 Phys. Rev. Lett. 99 165501
[4] Mumataz K, Echigoya J, Hirai T and Shindo Y 1993 Mater. Sci. Eng. A 167 187
[5] Kovacs G T A, Storment C W and Kounaves S P 1995 Sens. Actuators B 23 41
[6] Hamilton J C, Yang N Y C, Clift W M, Boehme D R, McCarty K F and Franklin J E 1992 Metall. Trans. A 23 851
[7] Evans P A 2005 Applied Organometallic Chemistry 19 11
[8] Lippard S J 1981 Progress in Inorganic Chemistry (NJ, USA: John Wiley & Sons)
[9] Yuan Y, Yan N and Dyson P J 2012 ACS Catalysis 2 1057
[10] Colinet C and Pasturel A 2001 Phys. Rev. B 64 205102
[11] lebacq O, Pasturel A, Manh D N, Finel A and Caudron R 1998 J. Alloy. Compd. 264 31
[12] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[13] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[14] Jones R O and Gunnarsson O 1989 Rev. Mod. Phys. 61 689
[15] Moruzzi V L, Janak J F and Schwarz 1988 Phys. Rev. B 37 790
[16] Jin H M and Wu P 2002 J. Alloy. Compd. 343 71
[17] Lu X G, Selleby M and Sundman B 2005 Acta Mater. 53 2259
[18] Mayer B, Antona H and Botta E 2003 Intermetallics 11 23
[19] Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471
[20] Baroni S, Giannozzi P and Testa A 1987 Phys. Rev. Lett. 58 1861
[21] Giannozzi P, de Gironcoli S, Pavone P and Baroni S 1991 Phys. Rev. B 43 7231
[22] Baroni S, de Gironcoli S, Corso A D and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[23] Narasimhan S and de Gironcoli S 2002 Phys. Rev. B 65 064302
[24] Quong A A and Liu A Y 1997 Phys. Rev. B 56 7767
[25] Xie J, de Gironcoli S, Baroni S and Scheffler M 1999 Phys. Rev. B 59 965
[26] Debernardi A, Alouani M and Dreysse H 2001 Phys. Rev. B 63 064305
[27] Heid R, Pintschovius L, Reichardt W and Bohnen K P 2000 Phys. Rev. B 61 12059
[28] Baroni S, Dal Corso A, Gironcoli S and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[29] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 567
[30] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[31] Vanderbilt D 1985 Phys. Rev. B 32 8412
[32] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[33] Murnaghan F D 1944 National Academy of Sciences of the United States of America 30 244
[34] Villars P, et al. 1991 Handbook of Crystallographic Data for Intermetallic Phases, 2nd edn. (ASM International)
[35] Rao C N and Rao K K 1964 Can. J. Phys. 42 1336
[36] Haas P, Tran F and Blaha F P 2009 Phys. Rev. B 79 085104
[37] Nygren L A and Leisure R G 1988 Phys. Rev. B 37 6482
[38] Schwarz R B, Bach H T, Harms U and Tuggle D 2005 Acta Meter. 53 569
[39] Bercegeay C and Bernard S 2005 Phys. Rev. B 72 214101
[40] Ono S and John P 2011 J. Phys. Chem. Solid. 72 169
[41] KarbasiA, Saxena S K and Hrubiak R 2011 Computer Coupling of Phase Diagrams and Thermo Chemistry 35 72
[42] Mehl M J and Papaconstantopoulos D A 1996 Phys. Rev. B 54 4519
[43] Gong H R 2008 Scripta Mater. 59 1197
[44] Singh H P 1998 Acta Cryst. A 24 469
[45] Gomez J, Ding Y, Koitz R, Ari P Seitsonen and Iann M 2013 Theoretical Chemistry Accounts 132 1350
[46] Simmons G and Wang H 1971 A Handbook of Single Crystal Elastic Constants and Calculated Aggregate Properties, 2nd edn. (Cambridge: MIT Press)
[47] Walker E, Ashkenazi J and Dacorogna M 1981 Phys. Rev. B 24 2254
[48] Manish K and Niranjan 2012 Intermetallics 26 150
[49] Hanan S and Bothina H 2008 J Phys. Chem. Solid 69 2457
[50] Cynn H, Klepeis J E, Yoo C S and Young D A 2002 Phys. Rev. Lett. 88 135701
[51] Liu K, He D W, Zhou X L and Chen H H 2011 Physica B 406 3065
[52] Ahuja B L, Sharma V, Rathor A, Jani A R and Sharma B K 2007 Nuclear Instruments and Methods in Physics Research B 262 391
[53] Noffke J and Fritsche L 1982 J. Phys. F 12 921
[54] Herrera-Suarez H J, Rubio-Ponce A and Olguímath $n D 2012 Rev. Mex. Fis. 58 46
[55] Mueller F M, Freemant A J, Dimmock J O and Furdyna A M 1970 Phys. Rev. B 1
[56] Jepsen O, Krogh Andersen O and Mackentosh A R 1970 Phys. Rev. B 12 3084
[57] Bannikov V V, Shein I R and Ivanovskii A L 2009 Solid State Commun. 149 1807
[58] Sudhapriyanga G, Asvinimeenaatcia A T, Rajeswarapalanichamy R and Iyakutti K 2014 Acta Phys. Polonica A 125 29
[59] Gianluca S, Angelo V and Marcella I 2008 J. Chem. Phys. 129 234703
[60] Bose S K, Kudrnovsky J, Mazin I I and Andersen O K 1990 Phys. Rev. B 41 12
[61] Nemoshkalenko V V, Antonov V N, Kirillova M M, Krasovskii A E and Nomerovannaya L V 1986 Sov. Phys. JETP 63 115
[62] Newnham Robert E 2005 Properties of Materials (New York: Oxford)
[63] Mattesini M, Magnuson M, Tasnádi F, Höglund C, Abrikosov Igor A and Hultman L 2009 Phys. Rev. B 79 125122
[64] Maradudin A A, et al. 1971 Solid State Physics, 2nd edn. (New York: Academic)
[65] Liang C P and Gong H R 2013 Intermetallics 32
[66] Baria J K and Jani A R 2003 Physica B 328 317
[67] Boucetta S and Zegrar F 2013 J. Magn. Alloy. 1 128
[68] Chen S T, Tang W Y, Kuo Y F, Chen S Y, Tsau C H, Shun T T and Yeh J W 2010 Mater. Sci. Eng. A 527 5818
[69] Chuang M H, Tsai M H, Wang W R, Lin S J and Yeh J W 2011 Acta Mater. 59 6308
[70] Hemphill M A, Yuan T, Wang G Y, Yeh J W, Tsai C W, Chuang A and Liaw P K 2012 Acta Mater. 60 5723
[71] Hsu C Y, Juan C C, Wang W R, Sheu T S, Yeh J W and Chen S K 2011 Mater. Sci. Eng. A 528 3581
[72] Tsai M H, Wang C W, Tsai C W, Shen W J, Yeh J W, Gan J Y and Wu W W 2011 J. Electrochem. Soc. 158
[73] Chou Y L, Wang Y C, Yeh J W and Shih H C 2010 Corros. Sci. 52 3481
[74] Gray D E 1972 American Institute of Physics Handbook, 3rd edn. (New York: McGraw Hill)
[75] Konti A and Varshni Y P 1969 J. Phys. 47 2021
[76] Nie Y Z, Xie Y Q, Peng H J and Li X B 2007 Physica B 395 121
[77] Qiuping Bian, Bose S K and Shukla R C 2008 J. Phys. Chem. Solid. 69 168
[78] Liu K, He D W, Zhou X L and Chen H H 2011 Physica B 406 3065
[1] A simple semiempirical model for the static polarizability of electronically excited atoms and molecules
Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski. Chin. Phys. B, 2023, 32(4): 043301.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[5] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[6] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[7] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[8] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[9] Electron emission induced by keV protons from tungsten surface at different temperatures
Li-Xia Zeng(曾利霞), Xian-Ming Zhou(周贤明), Rui Cheng(程锐), Yu Liu(柳钰), Xiao-An Zhang(张小安), and Zhong-Feng Xu(徐忠锋). Chin. Phys. B, 2022, 31(7): 073202.
[10] Development of an electronic stopping power model based on deep learning and its application in ion range prediction
Xun Guo(郭寻), Hao Wang(王浩), Changkai Li(李长楷),Shijun Zhao(赵仕俊), Ke Jin(靳柯), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(7): 073402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[13] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[14] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[15] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
No Suggested Reading articles found!