Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 030302    DOI: 10.1088/1674-1056/25/3/030302
GENERAL Prev   Next  

Hybrid entanglement concentration assisted with single coherent state

Rui Guo(郭锐)1, Lan Zhou(周澜)1,2, Shi-Pu Gu(顾世浦)3,Xing-Fu Wang(王兴福)2, Yu-Bo Sheng(盛宇波)1
1. Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing Nanjing 210003, China;
2. College of Mathematics & Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3. College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  Hybrid entangled state (HES) is a new type of entanglement, which combines the advantages of an entangled polarization state and an entangled coherent state. HES is widely discussed in the applications of quantum communication and computation. In this paper, we propose three entanglement concentration protocols (ECPs) for Bell-type HES, W-type HES, and cluster-type HES, respectively. After performing these ECPs, we can obtain the maximally entangled HES with some success probability. All the ECPs exploit the single coherent state to complete the concentration. These protocols are based on the linear optics, which are feasible in future experiments.
Keywords:  hybrid entangled state      quantum communication and computation      entanglement concentration     
Received:  15 October 2015      Published:  05 March 2016
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 61401222), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151502), the Qing Lan Project in Jiangsu Province, China, the Natural Science Foundation of Jiangsu Higher Education Institutions, China (Grant No. 15KJA120002), and the Priority Academic Development Program of Jiangsu Higher Education Institutions, China.
Corresponding Authors:  Yu-Bo Sheng     E-mail:  shengyb@njupt.edu.cn

Cite this article: 

Rui Guo(郭锐), Lan Zhou(周澜), Shi-Pu Gu(顾世浦),Xing-Fu Wang(王兴福), Yu-Bo Sheng(盛宇波) Hybrid entanglement concentration assisted with single coherent state 2016 Chin. Phys. B 25 030302

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[5] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[6] Hong C H, Heo J, Lim J I and Yang H J 2014 Chin. Phys. B 23 090309
[7] Chang Y, Zhang S B, Yan L L and Han G H 2015 Chin. Phys. B 24 050307
[8] Zhang C M, Li M, Huang J Z, Treeviriyanupab P, Li H W, Li F Y, Wang C, Yin Z Q, Chen W, Sripimanwat K and Han Z F 2014 Chin. Phys. B 23 090310
[9] Zhao L Y, Li H W, Yin Z Q, Chen W, You J and Han Z F 2014 Chin. Phys. B 23 100304
[10] Ye T Y 2015 Sci. China Phys. Mech. & Astro. 58 040301
[11] Heilmann R, Gräfe M, Nolte S and Szameit A 2015 Sci. Bull. 60 96
[12] Xu J S and Li C F 2015 Sci. Bull. 60 141
[13] Gu B, Huang Y G, Fang X and Huang H B 2014 Int. J. Theor. Phys. 53 1337
[14] Gao T, Yan F L and van Enk S J 2014 Phys. Rev. Lett. 112 180501
[15] Ding D, Yan F L and Gao T 2014 Sci China Phys. Mech. & Astro. 57 2098
[16] Wang M Y and Yan F L 2014 Eur. Phys. J. D 68 29
[17] Zheng C and Long G F 2014 Sci. China Phys. Mech. & Astro. 57 1238
[18] Zou X F and Qiu D W 2014 Sci. China Phys. Mech. & Astro. 57 1696
[19] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[20] Jeong H and An N B 2006 Phys. Rev. A 74 022104
[21] van Loock P, Ladd T D, Sanaka K, Yamaguchi F, Nemoto K, Munro W J and Yamamoto Y 2006 Phys. Rev. Lett. 96 240501
[22] Munro W J, Van Meter R, Louis S G R and Nemoto K 2008 Phys. Rev. Lett. 101 040502
[23] Bruno N, Martin A, Sekatski P, Sangouard N, Thew R T and Gisin N 2013 Nat. Phys. 9 545
[24] Park K, Lee S W and Jeong H 2013 Phys. Rev. A 86 062301
[25] Kwon H and Jeong H 2013 Phys. Rev. A 88 052127
[26] Sheng Y B, Zhou L and Long G L 2013 Phys. Rev. A 88 022302
[27] Jeong H, Zavatta A, Kang M, Lee S W, Costanzo L S, Grandi S, Ralph T C and Bellini M 2014 Nat. Photon. 8 564
[28] Lee S W and Jeong H 2013 Phys. Rev. A 87 022326
[29] Kwon H and Jeong H 2015 Phys. Rev. A 91 012340
[30] Bennett C H, Bernstein H J, Popesue S and Schumacher B 1996 Phys. Rev. A 53 2046
[31] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
[32] Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301
[33] Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
[34] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
[35] Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
[36] Deng F G 2012 Phys. Rev. A 85 022311
[37] Gu B 2012 J. Opt. Soc. Am. B 29 1685
[38] Wang C 2012 Phys. Rev. A 86 012323
[39] Peng Z H, Zou J, Liu X J, Xiao Y J and Kuang L M 2012 Phys. Rev. A 86 034305
[40] Sheng Y B, Zhou L, Wang L and Zhao S M 2013 Quant. Inf. Process. 12 1885
[41] Cao C, Wang C, He L Y and Zhang R 2013 Opt. Express 21 4093
[42] Cao C, Ding H, Li Y, Wang T J, Mi S C, Zhang R and Wang C 2015 Quant. Inf. Process. 14 1265
[43] Cao C, Wang T J, Zhang R and Wang C 2015 Laser Phys. Lett. 12 036001
[44] Wang C, Cao C, He L Y and Zhang C L 2014 Quant. Inf. Process. 13 1025
[45] Wang C, Wang T J, Zhang Y, Jiao R Z and Jin G S 2014 Opt. Exp. 22 1551
[46] Sheng Y B, Qu C C, Ou-Yang Y, Feng Z F and Zhou L 2014 Int. J. Theor. Phys. 53 2033
[47] Sheng Y B, Liu J, Zhao S Y and Zhou L 2013 Chin. Sci. Bull. 58 3507
[48] Zhang L H, Yang M and Cao Z L 2007 Phys. A 374 611
[49] Wang H F, Zhang S and Yeon K H 2010 Eur. Phys. J. D 56 271
[50] Yildiz A 2010 Phys. Rev. A 82 012317
[51] Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
[52] Wang T J and Long G L 2013 J. Opt. Soc. Am. B 30 1069
[53] Zhou L 2013 Quant. Inf. Process. 12 2087
[54] Fan L L, Xia Y and Song J 2014 Quant. Inf. Process. 13 1967
[55] Ji Y Q, Jin Z, Zhu A D, Wang H F and Zhang S 2014 J. Opt. Soc. Am. B 31 994
[56] Zhang R, Zhou S H and Cao C 2014 Sci. China Phys. Mech. & Astron. 57 1511
[57] Sheng Y B, Liu J, Zhao S Y, Wang L and Zhou L 2014 Chin. Phys. B 23 080305
[58] Zhou L, Sheng Y B and Zhao S M 2013 Chin. Phys. B 22 020307
[59] Zhou L, Sheng Y B, Cheng W W, Gong L Y and Zhao S M 2013 J. Opt. Soc. Am. B 30 71
[60] Sheng Y B, Feng Z F, Ou-Yang Y, Qu C C and Zhou L 2014 Chin. Phys. Lett. 31 050303
[61] Du F F and Deng F G 2015 Sci. China Phys. Mecha. & Astro. 58 040303
[62] Sheng Y B, Pan J, Guo R, Zhou L and Wang L 2015 Sci. China Phys. Mecha. & Astro. 58 060301
[63] Choudhury B S and Dhara A 2013 Quant. Inf. Process. 12 2577
[64] Si B, Su S L, Sun L L, Cheng L Y, Wang H F and Zhang S 2013 Chin. Phys. B 22 030305
[65] Xu T T, Xiong W and Ye L 2012 Mod. Phys. Lett. B 26 1250214
[66] Liu J, Zhao S Y, Zhou L and Sheng Y B 2014 Chin. Phys. B 23 020313
[67] Zhou L 2014 Chin. Phys. B 23 050308
[68] Zhao J, Zheng C H, Shi P, Ren C N and Gu Y J 2014 Opt. Commun. 322 32
[69] Liu H J, Fan L L, Xia Y and Song J 2015 Quantum Inf. Process. 14 2909
[70] Zhou L, Sheng Y B, Cheng W W, Gong L Y and Zhao S M 2013 Quant. Inf. Process. 12 1307
[71] Shukla C, Banerjee A and Pathak A 2015 Quant. Inf. Process. 14 2077
[72] Li T and Deng, F G 2014 Int. J. Theor. Phys. 53 3026
[73] Ren B C, Du F F and Deng F G 2013 Phys. Rev. A 88 012302
[74] Ji Y Q, Jin Z, Zhu A D, Wang H F and Zhang S 2014 Chin. Phys. B 23 050306
[75] Ren B C and Long G L 2014 Opt. Express 22 6547
[76] Li X H and Ghose S 2014 Laser Phys. Lett. 11 125201
[77] Li X H and Ghose S 2015 Phys. Rev. A 91 062302
[78] Zhou L and Sheng Y B 2013 arXiv:1307.6089
[79] Qu C C, Zhou L and Sheng Y B 2015 Quant. Inf. Process. 14 4131
[80] Sheng Y B and Zhou L 2013 Entropy 15 1776
[81] Lin Q, He B, Bergou J A and Ren Y H 2009 Phys. Rev. A 80 042311
[82] He B, Ren Y H and Bergou J A 2009 Phys. Rev. A 79 052323
[1] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[2] Optimal multi-photon entanglement concentration with the photonic Faraday rotation
Lan Zhou(周澜), Dan-Dan Wang(王丹丹), Xing-Fu Wang(王兴福), Shi-Pu Gu(顾世浦), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(2): 020302.
[3] Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons
Lan Zhou(周澜) and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(2): 020308.
[4] Entanglement concentration for W-type entangled coherent states
Sheng Yu-Bo, Liu Jiong, Zhao Sheng-Yang, Wang Lei, Zhou Lan. Chin. Phys. B, 2014, 23(8): 080305.
[5] Consequent entanglement concentration of a less-entangled electronic cluster state with controlled-not gates
Zhou Lan. Chin. Phys. B, 2014, 23(5): 050308.
[6] Electronic cluster state entanglement concentration based on charge detection
Liu Jiong, Zhao Sheng-Yang, Zhou Lan, Sheng Yu-Bo. Chin. Phys. B, 2014, 23(2): 020313.
[7] Efficient three-step entanglement concentration for an arbitrary four-photon cluster state
Si Bin, Su Shi-Lei, Sun Li-Li, Cheng Liu-Yong, Wang Hong-Fu, Zhang Shou. Chin. Phys. B, 2013, 22(3): 030305.
[8] Complete Bell-state analysis for single-photon hybrid entangled state
Sheng Yu-Bo, Zhou Lan, Cheng Wei-Wen, Gong Long-Yan, Wang Lei, Zhao Sheng-Mei. Chin. Phys. B, 2013, 22(3): 030314.
[9] Optimal entanglement concentration for three-photon W states with parity check measurement
Zhou Lan, Sheng Yu-Bo, Zhao Sheng-Mei. Chin. Phys. B, 2013, 22(2): 020307.
[10] Efficient electronic entanglement concentration assisted by single mobile electrons
Sheng Yu-Bo, Zhou Lan. Chin. Phys. B, 2013, 22(11): 110303.
[11] Multipartite entanglement concentration of electron-spin states with CNOT gates
Ren Bao-Cang, Hua Ming, Li Tao, Du Fang-Fang, Deng Fu-Guo. Chin. Phys. B, 2012, 21(9): 090303.
[12] Entanglement concentration for arbitrary hybrid less-entangled state and W state using quantum dots and microcavity coupled system
Cao Cong, Wang Chuan, Zhang Ru. Chin. Phys. B, 2012, 21(11): 110305.
[13] Scheme for entanglement concentration of unknown W class states via linear optics
Dong Ping, Cao Zhuo-Liang, Zhang Li-Hua. Chin. Phys. B, 2007, 16(3): 640-643.
No Suggested Reading articles found!