Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018213    DOI: 10.1088/1674-1056/25/1/018213
Special Issue: TOPICAL REVIEW — Fundamental physics research in lithium batteries
TOPICAL REVIEW—Fundamental physics research in lithium batteries Prev   Next  

Redox-assisted Li+-storage in lithium-ion batteries

Qizhao Huang(黄启昭) and Qing Wang(王庆)
Abstract  

Interfacial charge transfer is the key kinetic process dictating the operation of lithium-ion battery. Redox-mediated charge propagations of the electronic (e- and h+) and ionic species (Li+) at the electrode-electrolyte interface have recently gained increasing attention for better exploitation of battery materials. This article briefly summarises the energetic and kinetic aspects of lithium-ion batteries, and reviews the recent progress on various redox-assisted Li+ storage approaches. From molecular wiring to polymer wiring and from redox targeting to redox flow lithium battery, the role of redox mediators and the way of the redox species functioning in lithium-ion batteries are discussed.

Keywords:  energetics      interfacial charge transfer      molecular wiring      lithium-ion battery  
Received:  22 December 2015      Accepted manuscript online: 
PACS:  82.30.Fi (Ion-molecule, ion-ion, and charge-transfer reactions)  
  82.47.Aa (Lithium-ion batteries)  
Fund: 

Project supported by the National Research Foundation, Prime Minister's Office, Singapore under its Competitive Research Program (CRP Award No. NRF-CRP8-2011-04).

Corresponding Authors:  Qing Wang     E-mail:  msewq@nus.edu.sg

Cite this article: 

Qizhao Huang(黄启昭) and Qing Wang(王庆) Redox-assisted Li+-storage in lithium-ion batteries 2016 Chin. Phys. B 25 018213

[1] Choi N S, et al. 2012 Angew. Chem. Int. Ed. 51 9994
[2] Huang Q, Li H, Grätzel M and Wang Q 2013 Phys. Chem. Chem. Phys. 15 1793
[3] Wang Q, Zakeeruddin S M, Wang D, Exnar I and Grätzel M 2006 Angew. Chem. Int. Ed. 45 8197
[4] Weppner W 2003 Ionics 9 444
[5] Weppner W 2001 Ionics 7 404
[6] Hausbrand R, et al. 2015 Mater. Sci. Engin. B 192 3
[7] Hausbrand R 2014 Phys. Stat. Sol. (a) 211 2049
[8] Ogumi Z 2010 Electrochem. 78 319
[9] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[10] Xu K and von Cresce A 2011 J. Mater. Chem. 21 9849
[11] Aurbach D 2000 J. Power Sources 89 206
[12] Andersson A M, Abraham D P, Haasch R, MacLaren S, Liu J and Amine K 2002 J. Electrochem. Soc. 149 A1358
[13] Abe T, Fukuda H, Iriyama Y and Ogumi Z 2004 J. Electrochem. Society 151 A1120
[14] Doi T, Miyatake K, Iriyama Y, Abe T, Ogumi Z and Nishizawa T et al. 2004 Carbon 42 3183
[15] Ogumi Z, Abe T, Fukutsuka T, Yamate S and Iriyama Y 2004 J. Power Sources 127 72
[16] Xu K 2007 J. Electrochem. Soc. 154 A162
[17] Xu K, Lam Y, Zhang S S, Jow T R and Curtis T B 2007 J. Phys. Chem. C 111 7411
[18] Xu K, von Cresce A and Lee U 2010 Langmuir 26 11538
[19] Xu K 2014 Chem. Rev. 114 11503
[20] Aurbach D, et al. 2007 J. Power Sources 165 491
[21] Ganapathy S, van Eck E R H, Kentgens A P M, Mulder F M and Wagemaker M 2011 Chemistry 17 14811
[22] Wang Q, Zakeeruddin S M, Exnar I and Grätzel M 2004 J. Electrochem. Soc. 151 A1598
[23] Wang Q, Pechy P, Zakeeruddin S M, Exnar I and Grätzel M 2005 J. Power Sources 146 813
[24] Edström K, Gustafsson T and Thomas J O 2004 Electrochim. Acta 50 397
[25] Yamamoto K, et al. 2014 J. Phys. Chem. C 118 9538
[26] Takahashi M, Tobishima S I, Takei K and Sakurai Y 2002 Solid State Ion. 148 283
[27] Tang M, Carter W C and Chiang Y M 2010 Ann. Rev. Mater. Res. 40 501
[28] Dahn J R, Jiang J W, Moshurchak L, Buhrmester C and Wang R C L 2005 Interface 14 27
[29] Wang Q, Zakeeruddin S M, Exnar I and Grätzel M 2008 Electrochem. Commun. 10 651
[30] Wang Q, Evans N, Zakeeruddin S M, Exnar I and Grätzel M 2007 J. Am. Chem. Soc. 129 3163
[31] Wang Q, Evansa N, Zakeeruddina S M, Péchya P, Exnarb I and Grätzel M 2007 J. Power Sources 174 408
[32] Wang D, Ela S E, Zakeeruddin S M, Pechy P, Exnar I, Wang Q and Grätzel M 2009 Electrochem. Commun. 11 1350
[33] Huang Y H, Park K S and Goodenough J B 2006 J. Electrochem. Soc. 153 A2282
[34] Park K S, Schougaard S B and Goodenough J B 2007 Adv. Mater. 19 848
[35] Wang K X, Li X H and Chen J S 2015 Adv. Mater. 27 527
[36] Wang G X, Yang L, Chen Y, Wang J Z, Bewlay S and Liu H K 2005 Electrochim. Acta 50 4649
[37] Fedorková A, et al. 2010 J. Power Sources 195 3907
[38] Fedorková A, et al. 2010 J. Solid State Electrochem. 14 2173
[39] Arbizzani C, Balducci A, Mastragostino M, Rossi M and Soavi F 2003 J. Power Sources 119 695
[40] Her L J, Hong J L and Chang C C 2006 J. Power Sources 157 457
[41] Zhan L, et al. 2008 Electrochim. Acta 53 8319
[42] Lepage D, Michot C, Liang G, Gauthier M and Schougaard S B 2011 Angew. Chem. Int. Ed. 50 6884
[43] Jennings J R, Huang Q and Wang Q 2015 J. Phys. Chem. C 119 17522
[44] Pan F, Yang J, Huang Q, Wang X Z, Huang H and Wang Q 2014 Adv. Energy Mater. 4 1400567
[45] Jia C, Pan F, Zhu Y G, Huang Q, Lu L and Wang Q 2015 Sci. Adv. 1 e1500886
[46] Duduta M, Ho B, Wood V V, Limthongkul P, Brunini V E, Carter W C and Chiang Y M 2011 Adv. Energy Mater. 1 511
[47] Huang Q and Wang Q 2015 ChemPlusChem 80 312
[48] Li J, Yang L, Yang S and Lee J Y 2015 Adv. Energy Mater. 5 1501808
[49] Zhu Y G, Jia C, Pan F, Huang Q and Wang Q 2015 Chem. Commun. 51 9451
[1] Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion
Fengling Chen(陈峰岭), Chaozhi Zeng(曾朝智), Chun Huang(黄淳), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(7): 078101.
[2] Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials
Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(5): 058101.
[3] Review on electrode-level fracture in lithium-ion batteries
Bo Lu(吕浡), Chengqiang Ning(宁成强), Dingxin Shi(史定鑫), Yanfei Zhao(赵炎翡), Junqian Zhang(张俊乾). Chin. Phys. B, 2020, 29(2): 026201.
[4] Influence of carbon coating on the electrochemical performance of SiO@C/graphite composite anode materials
Hao Lu(陆浩), Junyang Wang(汪君洋), Bonan Liu(刘柏男), Geng Chu(褚赓), Ge Zhou(周格), Fei Luo(罗飞), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(6): 068201.
[5] Parameter identification and state-of-charge estimation approach for enhanced lithium-ion battery equivalent circuit model considering influence of ambient temperatures
Hui Pang(庞辉), Lian-Jing Mou(牟联晶), Long Guo(郭龙). Chin. Phys. B, 2019, 28(10): 108201.
[6] Multi-scale computation methods: Their applications in lithium-ion battery research and development
Siqi Shi(施思齐), Jian Gao(高健), Yue Liu(刘悦), Yan Zhao(赵彦), Qu Wu(武曲), Wangwei Ju(琚王伟), Chuying Ouyang(欧阳楚英), Ruijuan Xiao(肖睿娟). Chin. Phys. B, 2016, 25(1): 018212.
[7] Analysis on the capacity degradation mechanism of a series lithium-ion power battery pack based on inconsistency of capacity
Wang Zhen-Po (王震坡), Liu Peng (刘鹏), Wang Li-Fang (王丽芳). Chin. Phys. B, 2013, 22(8): 088801.
[8] Cation mixing (Li0.5Fe0.5)2SO4F cathode material for lithium-ion batteries
Sun Yang(孙洋), Liu Lei(刘磊), Dong Jin-Ping(董金平), Zhang Bin(张斌), and Huang Xue-Jie(黄学杰). Chin. Phys. B, 2011, 20(12): 126101.
[9] Electrochemical properties of SnO2 nanorods as anode materials in lithium-ion battery
Shi Song-Lin(施松林), Liu Yong-Gang(刘永刚), Zhang Jing-Yuan(张敬源), and Wang Tai-Hong(王太宏). Chin. Phys. B, 2009, 18(10): 4564-4570.
No Suggested Reading articles found!