Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 013602    DOI: 10.1088/1674-1056/25/1/013602
Special Issue: TOPICAL REVIEW — 8th IUPAP International Conference on Biological Physics
TOPICAL REVIEW—8th IUPAP International Conference on Biological Physics Prev   Next  

A new understanding of inert gas narcosis

Meng Zhang(张萌)1,2, Yi Gao(高嶷)1, Haiping Fang(方海平)1
1. Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
2. School of Information Technology & Engineering, Jinzhong University, Jinzhong 030619, China
Abstract  

Anesthetics are extremely important in modern surgery to greatly reduce the patient's pain. The understanding of anesthesia at molecular level is the preliminary step for the application of anesthetics in clinic safely and effectively. Inert gases, with low chemical activity, have been found to cause anesthesia for centuries, but the mechanism is unclear yet. In this review, we first summarize the progress of theories about general anesthesia, especially for inert gas narcosis, and then propose a new hypothesis that the aggregated rather than the dispersed inert gas molecules are the key to trigger the narcosis to explain the steep dose-response relationship of anesthesia.

Keywords:  cluster      inert gas      anesthesia      narcotic potency  
Received:  23 May 2015      Revised:  30 November 2015      Accepted manuscript online: 
PACS:  36.40.-c (Atomic and molecular clusters)  
  82.20.Wt (Computational modeling; simulation)  
  87.15.A- (Theory, modeling, and computer simulation)  
  87.50.cf (Biophysical mechanisms of interaction)  
Fund: 

Project supported by the Supercomputing Center of Chinese Academy of Sciences in Beijing, China, the Shanghai Supercomputer Center, China, the National Natural Science Foundation of China (Grant Nos. 21273268, 11290164, and 11175230), the Startup Funding from Shanghai Institute of Applied Physics, Chinese Academy of Sciences (Grant No. Y290011011), “Hundred People Project” from Chinese Academy of Sciences, and “Pu-jiang Rencai Project” from Science and Technology Commission of Shanghai Municipality, China (Grant No. 13PJ1410400).

Corresponding Authors:  Yi Gao, Haiping Fang     E-mail:  gaoyi@sinap.ac.cn;fanghaiping@sinap.ac.cn

Cite this article: 

Meng Zhang(张萌), Yi Gao(高嶷), Haiping Fang(方海平) A new understanding of inert gas narcosis 2016 Chin. Phys. B 25 013602

[1] Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C and Alyautdin R 2002 J. Drug Target. 10 317
[2] Nemmar A, Hoet P H M, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts M F, Vanbilloen H, Mortelmans L and Nemery B 2002 Circulation 105 411
[3] Daniel M C and Astruc D 2004 Chem. Rev. 104 293
[4] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S and Weiss S 2005 Science 307 538
[5] Nel A, Xia T, Madler L and Li N 2006 Science 311 622
[6] Rosi N L, Giljohann D A, Thaxton C S, Lytton-Jean A K R, Han M S and Mirkin C A 2006 Science 312 1027
[7] Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G and Alexander A 2006 Toxicol. Sci. 92 5
[8] Liu Z, Cai W B, He L N, Nakayama N, Chen K, Sun X M, Chen X Y and Dai H J 2007 Nat. Nanotechnol. 2 47
[9] Gilbert N 2009 Nature 460 937
[10] Hu W B, Peng C, Luo W J, Lv M, Li X M, Li D, Huang Q and Fan C H 2010 ACS Nano 4 4317
[11] Zuo G H, Huang Q, Wei G H, Zhou R H and Fang H P 2010 ACS Nano 4 7508
[12] Tu Y S, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z R, Huang Q, Fan C H, Fang H P and Zhou R H 2013 Nat. Nanotechnol. 8 594
[13] Lacerda S H D, Park J J, Meuse C, Pristinski D, Becker M L, Karim A and Douglas J F 2010 ACS Nano 4 365
[14] Moncada S, Palmer R M J and Higgs E A 1991 Pharmacol. Rev. 43 109
[15] Bennett P B 2003 Bennett and Elliott's Physiology and Medicine of Diving (5th edn.) (London: Saunders) pp. 300-322
[16] Junod T 1835 Ann. Gen. Med. 9 157
[17] Wells H 1847 A History of the Discovery of the Application of Nitrous Oxide Gas, Ether and Other Vapors, to Surgical Operations
[18] 1990 The Elements 71st (Boston: CRC Press) p. 4
[19] Cullen S C, Eger E I, Cullen B F and Gregory P 1969 Anesthesiology 31 305
[20] Goto T, Suwa K, Uezono S, Ichinose F, Uchiyama M and Morita S 1998 Br. J. Anaesth. 80 255
[21] Lawrence J, Loomis W, Tobias C and Turpin F 1946 J. Physiol. 105 197
[22] Cullen S C and Gross E G 1951 Science 113 580
[23] Lane G A, Nahrwold M L, Tait A R, Taylorbusch M, Cohen P J and Beaudoin A R 1980 Science 210 899
[24] Eger E I, Saidman L J and Brandsta B 1965 Anesthesiology 26 756
[25] Harless E and Bibra E V 1847 Die Ergebnisse Der Versuche ber Die Wirkung Des Schwefeläthers (Titles in German)
[26] Meyer H 1899 Archiv für experimentelle Pathologie und Pharmakologie 42 109
[27] Meyer H 1899 Archiv für experimentelle Pathologie und Pharmakologie 42 108
[28] Meyer H 1901 Archiv für experimentelle Pathologie und Pharmakologie 46 338
[29] Overton C E 1901 Studien ber Die Narkose Zugleich Ein Beitrag Zur Allgemeinen Pharmakologie: Fischer) p. 195
[30] Skou J C 1958 Biochim. Biophys. Acta 30 625
[31] Clements J A and Wilson K M 1962 Proc. Natl. Acad. Sci. USA 48 1008
[32] Metcalfe J C, Seeman P and Burgen A S V 1968 Mol. Pharmacol. 4 87
[33] Hill M W 1974 Biochim. Biophys. Acta 356 117
[34] Mountcastle D, Biltonen R and Halsey M 1978 Proc. Natl. Acad. Sci. USA 75 4906
[35] Bangham A D, Standish M M and Miller N 1965 Nature 208 1295
[36] Franks N P and Lieb W R 1978 Nature 274 339
[37] Eger E I, Saidman L J and Brandstater B 1965 Anesthesiology 26 764
[38] Franks N and Lieb W 1996 Anesthesiology 84 716
[39] Franks N and Lieb W 1984 Nature 310 599
[40] Franks N P and Lieb W R 1994 Nature 367 607
[41] Mihic S J, Ye Q, Wick M J, Koltchine V V, Krasowski M A, Finn S E, Mascia M P, Valenzuela C F, Hanson K K, Greenblatt E P, Harris R A and Harrison N L 1997 Nature 389 385
[42] Franks N P, Dickinson R, de Sousa S L M, Hall A C and Lieb W R 1998 Nature 396 324
[43] Franks N P 2008 Nat. Rev. Neurosci. 9 370
[44] Lou S T, Ouyang Z Q, Zhang Y, Li X J, Hu J, Li M Q and Yang F J 2000 J. Vac. Sci. Technol. B 18 2573
[45] Ishida N, Inoue T, Miyahara M and Higashitani K 2000 Langmuir 16 6377
[46] Holmberg M, Kuhle A, Garnaes J, Morch K A and Boisen A 2003 Langmuir 19 10510
[47] Tyrrell J W G and Attard P 2001 Phys. Rev. Lett. 87 176104
[48] Attard P 2003 Adv. Colloid Interface Sci. 104 75
[49] Zhang X H, Zhang X D, Lou S T, Zhang Z X, Sun J L and Hu J 2004 Langmuir 20 3813
[50] Dammer S M and Lohse D 2006 Phys. Rev. Lett. 96 206101
[51] Smeets R M M, Keyser U F, Wu M Y, Dekker N H and Dekker C 2006 Phys. Rev. Lett. 97 088101
[52] Zhang L, Zhang Y, Zhang X, Li Z, Shen G, Ye M, Fan C, Fang H and Hu J 2006 Langmuir 22 8109
[53] Zhang X H, Maeda N and Craig V S J 2006 Langmuir 22 5025
[54] Zhang X H, Khan A and Ducker W A 2007 Phys. Rev. Lett. 98 136101
[55] Matsumoto M and Tanaka K 2008 Fluid Dyn. Res. 40 546
[56] Ducker W A 2009 Langmuir 25 8907
[57] Brenner M P and Lohse D 2008 Phys. Rev. Lett. 101 214505
[58] Fang H and Hu J 2006 Nucl. Sci. Tech. 17 71
[59] Wang C L, Li Z X, Li J Y, Xiu P, Hu J and Fang H P 2008 Chin. Phys. B 17 2646
[60] Zhang L, Chen H, Li Z, Fang H and Hu J 2008 Sci. China Ser. G 51 219
[61] Zhang M, Zuo G, Chen J, Gao Y and Fang H 2013 Sci. Rep. 3 1660
[62] Koch C A, Anderson D, Moran M F, Ellis C and Pawson T 1991 Science 252 668
[63] Pawson T and Gish G D 1992 Cell 71 359
[64] Wu X D, Knudsen B, Feller S M, Zheng J, Sali A, Cowburn D, Hanafusa H and Kuriyan J 1995 Structure 3 215
[65] Ball L J, Kuhne R, Schneider-Mergener J and Oschkinat H 2005 Angew. Chem.-Int. Edit. 44 2852
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[3] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[4] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[7] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[8] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
[9] Ultrafast Coulomb explosion imaging of molecules and molecular clusters
Xiaokai Li(李孝开), Xitao Yu(余西涛), Pan Ma(马盼), Xinning Zhao(赵欣宁), Chuncheng Wang(王春成), Sizuo Luo(罗嗣佐), and Dajun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103304.
[10] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] An optimized cluster density matrix embedding theory
Hao Geng(耿浩) and Quan-lin Jie(揭泉林). Chin. Phys. B, 2021, 30(9): 090305.
[13] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[14] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[15] Evolution of ion-irradiated point defect concentration by cluster dynamics simulation
Shuaishuai Feng(冯帅帅), Shasha Lv(吕沙沙), Liang Chen(陈良), and Zhengcao Li(李正操). Chin. Phys. B, 2021, 30(5): 056105.
No Suggested Reading articles found!