Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 057101    DOI: 10.1088/1674-1056/24/5/057101

Antiferromagnetism and Kondo screening on a honeycomb lattice

Lin Heng-Fu, Tao Hong-Shuai, Guo Wen-Xiang, Liu Wu-Ming
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Magnetic adatoms in the honeycomb lattice have received tremendous attention due to the interplay between Ruderman–Kittel–Kasuya–Yosida interaction and Kondo coupling leading to very rich physics. Here we study the competition between the antiferromagnetism and Kondo screening of local moments by the conduction electrons on the honeycomb lattice using the determinant quantum Monte Carlo method. While changing the interband hybridization V, we systematically investigate the antiferromagnetic-order state and the Kondo singlet state transition, which is characterized by the behavior of the local moment, antiferromagnetic structure factor, and the short range spin-spin correlation. The evolution of the single particle spectrum are also calculated as a function of hybridization V, we find that the system presents a small gap in the antiferromagnetic-order region and a large gap in the Kondo singlet region in the Fermi level. We also find that the localized and itinerant electrons coupling leads to the midgap states in the conduction band in the Fermi level at very small V. Moreover, the formation of antiferromagnetic order and Kondo singlet are studied as on-site interaction U or temperature T increasing, we have derived the phase diagrams at on-site interaction U (or temperature T) and hybridization V plane.

Keywords:  periodic Anderson model      antiferromagnetism      Kondo screening  
Received:  23 December 2014      Revised:  16 January 2015      Published:  05 May 2015
PACS:  71.10.-w (Theories and models of many-electron systems)  
  75.10.Hk (Classical spin models)  
  75.10.-b (General theory and models of magnetic ordering)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  

Project supported by the National Key Basic Research Special Foundation of China (Grants Nos. 2011CB921502 and 2012CB821305), the National Natural Science Foundation of China (Grants Nos. 61227902, 61378017, and 11434015), the State Key Laboratory for Quantum Optics and Quantum Optical Devices, China (Grant No. KF201403).

Corresponding Authors:  Lin Heng-Fu     E-mail:
About author:  71.10.-w; 75.10.Hk; 75.10.-b; 71.10.Fd

Cite this article: 

Lin Heng-Fu, Tao Hong-Shuai, Guo Wen-Xiang, Liu Wu-Ming Antiferromagnetism and Kondo screening on a honeycomb lattice 2015 Chin. Phys. B 24 057101

[1] Andres K, Graebner J and Ott H R 1975 Phys. Rev. Lett. 35 1779
[2] Steglich F, Aarts J, Bredl C D, Meshida D E, Franz W and Schafer H 1976 Phys. Rev. Lett. 43 1892
[3] Bucher E, Maita J P, Hull G W, Fulton R C and Cooper A S 1975 Phys. Rev. B 11 440
[4] Stewart G 2001 Rev. Mod. Phys. 73 797
[5] Varma C, Nussinov Z and van saarlos W 2002 Phys. Rep. 361 267
[6] Wilson K G 1975 Rev. Mod. Phys. 47 773
[7] Qiu P Y 2014 Chin. Phys. Lett. 31 066201
[8] Aquino F and Rodriguez J H 2005 J. Chem. Phys. 123 204902
[9] Hewson A C 1993 The Kondo Problem to Heay Fermions (Cambridge: Cambridge University Press)
[10] Assaad F F 1999 Phys. Rev. Lett. 83 796
[11] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2006 Rev. Mod. Phys. 81 109
[12] Kotov V N, Uchoa B, Pereira V M, Guinea F and Neto A H C 2012 Rev. Mod. Phys. 84 1067
[13] Rowlands D A and Zhang Y Z 2014 Chin. Phys. B 23 037101
[14] Zhou J L, Gan P and Hu S D 2012 Chin. Phys. B 21 027101
[15] Guzmanverri G G and Lew Y V L C 2007 Phys. Rev. B 76 075131
[16] Vogt P, DePadova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[17] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[18] Meng Z Y, Lang T C, Wessel S, Assaad F F and Muramatsu A 2010 Nature 464 847
[19] Assaad F F and Herbut I F 2013 Phys. Rev. X 3 031010
[20] Raghu S, Qi X L, Honerkamp C and Zhang S C 2008 Phys. Rev. Lett. 100 156401
[21] Liu H D, Chen Y H, Lin H F and Wu J H 2014 Chin. Phys. B 23 077101
[22] Chen J H, Li L, Cullen W G, Williams E D and Fuhrer M S 2011 Nat. Phys. 7 535.
[23] Withoff D and Fradkin E 1990 Phys. Rev. Lett. 64 1835
[24] Cornaglia P S, Usaj G and Balseiro C A 2009 Phys. Rev. Lett. 102 0x46801
[25] Wehling T O, Balatsky A V, Katsnelson M I, Lichtenstein A I and Rosch A 2010 Phys. Rev. B 81 115427
[26] Black-Schaffer A M 2010 Phys. Rev. B 81 205416
[27] Daghofer M, Zheng N and Moreo A 2010 Phys. Rev. B 82 121405
[28] Smirnova O 2009 J. Am. Chem. Soc. 131 8313
[29] Kandpal H C and van den Brink 2011 J. Phys. Rev. B 83 140412
[30] Breger J 2005 J. Solid State Chem. 178 2575
[31] Bauer J, Salomon C and Demier E 2013 Phys. Rev. Lett. 111 215304
[32] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[33] Kechedzhi K, Falko V I, McCann E and Altshuler B L 2007 Phys. Rev. Lett. 98 176806
[34] Goldman N, Kubasiak A, Bermudez A, Gaspard P, Lewenstein M and Martin-Delgado M A 2009 Phys. Rev. Lett. 103 035301
[35] Ruderman M A and Kittel C 1954 Phys. Rev. 96 99
[36] Kondo J 1964 Prog. Theor. Phys. 32 37
[37] Motome Y, Nakamikawa K, Yamaji Y and Udagawa M 2010 Phys. Rev. Lett. 105 036403
[38] Misawa T, Yoshitake J and Motome Y 2013 Phys. Rev. Lett. 110 246401
[39] Ishizuka H and Motome Y 2012 Phys. Rev. Lett. 108 257205
[40] Anderson P W 1961 Phys. Rev. 124 41
[41] Schriffer J R and Wolff P A 1966 Phys. Rev. 149 491
[42] Scalapino D J and Sugar R L 1981 Phys. Rev. Lett. 46 519
[43] Loh E Y and Gubernatis J E 1992 Modern Problems in Condensed Matter Sciences (North-Holland: Amsterdam) pp. 177-193
[44] Bai Z, Chen W, Scalettar R, Yamazaki I 2009 Multi-Scale Phenomena in Complex Fluids (Beijing: Higher Education Press) pp. 1-110
[45] Scalettar R T, Noack R M and Singh R R P 1991 Phys. Rev. B 44 10502
[46] Jarrell M and Gubernatis J E 1996 Phys. Rep. 269 133
[47] Wakabayashi K and Sigrist M 2000 Phys. Rev. Lett. 84 3390
[48] Pereira V M, Guinea F, Lopes dos Santos J M B, Peres N M R and Castro N A H 2005 Phys. Rev. Lett. 96 036801
[49] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
[50] Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys. 77 1027
[51] Kotliar G, Savrasov S Y, Pálsson G and Biroli G 2001 Phys. Rev. Lett. 87 186401
[52] Limot L, Mendels P, Collin G, Mondelli C, Ouladdiaf B, Mutka H, Blanchard N and Mekata M 2002 Phys. Rev. B 65 144447
[53] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[54] Paschen S, Luhmann T, Wirth S, Gegenwart P, Trovarelli O, Geibel C, Steglich F, Coleman P and Si Q 2004 Nature 432 881
[55] Shishido H, Settai R, Harima H and Onuki Y 2005 J. Phys. Soc. Jpn. 74 1103
[1] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[2] Crystallographic and magnetic properties of van der Waals layered FePS3 crystal
Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮). Chin. Phys. B, 2019, 28(5): 056102.
[3] Phase diagram, correlations, and quantum critical point in the periodic Anderson model
Jian-Wei Yang(杨建伟), Qiao-Ni Chen(陈巧妮). Chin. Phys. B, 2018, 27(3): 037101.
[4] Superconductivity in self-flux-synthesized single crystalline R2Pt3Ge5(R = La, Ce, Pr)
Q Sheng(盛琪), J Zhang(张建), K Huang(黄百畅), Z Ding(丁兆峰), X Peng(彭小冉), C Tan(谭程), L Shu(殳蕾). Chin. Phys. B, 2017, 26(5): 057401.
[5] Finite-size effect and Kondo screening effect in an A-B ring with a quantum dot
Wu Shao-Quan, Wang Shun-Jin, Sun Wei-Li, Yu Wan-Lun. Chin. Phys. B, 2004, 13(4): 510-515.
[6] The persistent current in an Aharonov-Bohm ring with a side-coupled quantum dot
Zhou Bo, Wu Shao-Quan, Sun Wei-Li, Zhou Xiao-Lin. Chin. Phys. B, 2004, 13(2): 225-228.
No Suggested Reading articles found!