Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 044702    DOI: 10.1088/1674-1056/24/4/044702

Analysis for flow of Jeffrey fluid with nanoparticles

T. Hayata b, Sadia Asada, A. Alsaedib
a Department of Mathematics, Quaid-i-Azam University, 45320 Islamabad 44000, Pakistan;
b Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Abstract  An analysis of the boundary layer flow and heat transfer in a Jeffrey fluid containing nanoparticles is presented in this paper. Here, fluid motion is due to a stretchable cylinder. The thermal conductivity of the fluid is taken to be temperature-dependent. The partial differential equations of velocity, temperature, and concentration fields are transformed to a dimensionless system of ordinary differential equations. Nonlinear governing analysis is computed for the homotopy solutions. The behaviors of Brownian motion and thermophoresis diffusion of nanoparticles have been examined graphically. Numerical values of the local Nusselt number are computed and analyzed.
Keywords:  stretching cylinder      Jeffrey nanofluid      convergence  
Received:  25 November 2013      Revised:  13 September 2014      Published:  05 April 2015
PACS:  47.50.-d (Non-Newtonian fluid flows)  
Corresponding Authors:  Sadia Asad     E-mail:

Cite this article: 

T. Hayat, Sadia Asad, A. Alsaedi Analysis for flow of Jeffrey fluid with nanoparticles 2015 Chin. Phys. B 24 044702

[1] Sakiadis B C 1961 AIChE J. 7 26
[2] Buongiorno J 2006 ASME J. Heat Transfer 128 240
[3] Hassani M, Tabar M M, Nemati H, Domairrya G and Noori F 2011 Int. J. Thermal Sci. 50 2256
[4] Bachok N, Ishak A, Nazar R and Pop I 2010 Physica B 405 4914
[5] Ellahi R, Raza M and Vafai K 2012 Math. Comput. Model. 55 1876
[6] Rohni A M, Ahmad S, Merkin J H and Pop I 2013 Trans. Porous Med. 96 237
[7] Ibrahim W and Shankar B 2013 Comput. Fluids 75 1
[8] Ellahi R 2013 Appl. Math. Model. 37 1451
[9] Zheng L, Zhang C, Zhang X and Zhang J 2013 J. Franklin Institute 350 990
[10] Turkyilmazoglu M and Pop I 2013 Int. J. Heat Mass Transfer 59 167
[11] Nadeem S, Rehman A, Vajravelu K, Lee J and Lee C 2012 Math. Prob. Eng. 2012 17
[12] Wang C Y 1988 Phys. Fluids 31 466
[13] Ishak A M 2009 J. Phys. A: Math. Theor. 42 1
[14] Mukhopadhyay S 2011 Ain Shams Eng. J. 4 317
[15] Fang T G and Yao S S 2011 Chin. Phys. Lett. 28 114702
[16] Rangi R R and Ahmad N 2012 Appl. Math. 3 205
[17] Mukhopadhyay S 2012 J. Petroleum Sci. Eng. 2012 8
[18] Liao S 2010 Comm. Nonlinear Sci. Num. Simul. 15 2003
[19] Rashidi M M, Abelman S and Mehr F N 2013 Int. J. Heat Mass Transfer 62 515
[20] Ramaz M, Farooq M, Alsaedi A and Hayat T 2013 Eur. Phys. J. Plus 128 49
[21] Hayat T, Shehzad S A, Alsaedi A and Alhothuali M S 2013 Appl. Math. Mech. 13 1685
[22] Abbasbandy S, Hashemi M S and Hashim I 2013 Quaestiones Math. 36 93
[23] Mustafa M, Hayat T and Hendi A A 2012 ASME-J. Appl. Mech. 79 1
[24] Hayat T, Asad S, Qasim M and Hendi A A 2012 Int. J. Num. Method Fluids 69 1350
[25] Alsaedi A, Iqbal Z, Mustafa M and Hayat T 2012 Z. Naturforsch. 67a 517
[26] Hayat T, Qayyum A, Alsaadi F, Awais M and Abdullah M Dobaie 2013 Eur. Phys. J. Plus 128 85
[27] Turkyilmazoglu M and Pop I 2013 Int. J. Heat Mass Transfer 57 82
[1] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[2] Truncated series solutions to the (2+1)-dimensional perturbed Boussinesq equation by using the approximate symmetry method
Xiao-Yu Jiao(焦小玉). Chin. Phys. B, 2018, 27(10): 100202.
[3] A novel stable value iteration-based approximate dynamic programming algorithm for discrete-time nonlinear systems
Yan-Hua Qu(曲延华), An-Na Wang(王安娜), Sheng Lin(林盛). Chin. Phys. B, 2018, 27(1): 010203.
[4] Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method
Hu Dou(窦虎), Hongmei Ma(马红梅), Yu-Bao Sun(孙玉宝). Chin. Phys. B, 2016, 25(9): 094221.
[5] Dynamic properties of chasers in a moving queue based on a delayed chasing model
Ning Guo(郭宁), Jian-Xun Ding(丁建勋), Xiang Ling(凌翔), Qin Shi(石琴), Reinhart Kühne. Chin. Phys. B, 2016, 25(5): 050505.
[6] A local energy-preserving scheme for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang, Wang Jia-Lin, Wang Yu-Shun. Chin. Phys. B, 2015, 24(5): 050205.
[7] A meshless algorithm with moving least square approximations for elliptic Signorini problems
Wang Yan-Chong, Li Xiao-Lin. Chin. Phys. B, 2014, 23(9): 090202.
[8] Precipitation efficiency and its relationship to physical factors
Zhou Yu-Shu, Li Xiao-Fan, Gao Shou-Ting. Chin. Phys. B, 2014, 23(6): 064210.
[9] Effects of water and ice clouds on cloud microphysical budget:An equilibrium modeling study
Gao Shou-Ting, Li Xiao-Fan, Zhou Yu-Shu. Chin. Phys. B, 2014, 23(2): 024204.
[10] A conservative Fourier pseudospectral algorithm for the nonlinear Schrödinger equation
Lv Zhong-Quan, Zhang Lu-Ming, Wang Yu-Shun. Chin. Phys. B, 2014, 23(12): 120203.
[11] Consensus problems of first-order dynamic multi-agent systems with multiple time delays
Ji Liang-Hao, Liao Xiao-Feng. Chin. Phys. B, 2013, 22(4): 040203.
[12] Variational-integral perturbation corrections of some lower excited states for hydrogen atoms in magnetic fields
Yuan Lin, Zhao Yun-Hui, Xu Jun, Zhou Ben-Hu, Hai Wen-Hua. Chin. Phys. B, 2012, 21(10): 103103.
[13] A meshless method for the nonlinear generalized regularized long wave equation
Wang Ju-Feng, Bai Fu-Nong, Cheng Yu-Min. Chin. Phys. B, 2011, 20(3): 030206.
[14] A new finite difference scheme for a dissipative cubic nonlinear Schr"odinger equation
Zhang Rong-Pei, Yu Xi-Jun, Zhao Guo-Zhong. Chin. Phys. B, 2011, 20(3): 030204.
[15] A method of recovering the initial vectors of globally coupled map lattices based on symbolic dynamics
Sun Li-Sha, Kang Xiao-Yun, Zhang Qiong, Lin Lan-Xin. Chin. Phys. B, 2011, 20(12): 120507.
No Suggested Reading articles found!