Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 038202    DOI: 10.1088/1674-1056/24/3/038202

New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries

Mu Lin-Qin, Hu Yong-Sheng, Chen Li-Quan
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

In order to achieve better Na storage performance, most layered oxide positive electrode materials contain toxic and expensive transition metals Ni and/or Co, which are also widely used for lithium-ion batteries. Here we report a new quaternary layered oxide consisting of Cu, Fe, Mn, and Ti transition metals with O3-type oxygen stacking as a positive electrode for room-temperature sodium-ion batteries. The material can be simply prepared by a high-temperature solidstate reaction route and delivers a reversible capacity of 94 mAh/g with an average storage voltage of 3.2 V. This paves the way for cheaper and non-toxic batteries with high Na storage performance.

Keywords:  layered oxides      positive electrode      sodium-ion battery      energy storage  
Received:  26 December 2014      Revised:  30 January 2015      Accepted manuscript online: 
PACS:  82.45.Yz (Nanostructured materials in electrochemistry)  
  82.47.Aa (Lithium-ion batteries)  
  82.47.Cb (Lead-acid, nickel-metal hydride and other batteries)  
Corresponding Authors:  Hu Yong-Sheng     E-mail:

Cite this article: 

Mu Lin-Qin, Hu Yong-Sheng, Chen Li-Quan New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries 2015 Chin. Phys. B 24 038202

[1] Armand M and Tarascon J M 2008 Nature 451 652
[2] Yang Z, Zhang J, Kintner-Meyer M C, Lu X, Choi D, Lemmon J P and Liu J 2011 Chem. Rev. 111 3577
[3] Kim S W, Seo D H, Ma X, Ceder G and Kang K 2012 Adv. Energy Mater. 2 710
[4] Palomares V, Casas-Cabanas M, Castillo-Martínez E, Han M H and Rojo T 2013 Energy Environ. Sci. 6 2312
[5] Pan H, Hu Y S and Chen L 2013 Energy Environ. Sci. 6 2338
[6] Slater M D, Kim D, Lee E and Johnson C S 2013 Adv. Funct. Mater. 23 947
[7] Doeff M M, Peng M Y, Ma Y and Jonghe L C D 1994 J. Electrochem. Soc. 141 L145
[8] Jian Z, Han W, Lu X, Yang H, Hu Y S, Zhou J, Zhou Z, Li J, Chen W, Chen D and Chen L 2013 Adv. Energy Mater. 3 156
[9] Pan H, Lu X, Yu X, Hu Y S, Li H, Yang X Q and Chen L 2013 Adv. Energy Mater. 3 1186
[10] Sun Y, Zhao L, Pan H, Lu X, Gu L, Hu Y S, Li H, Armand M, Ikuhara Y, Chen L and Huang X 2013 Nat. Commun. 4 1870
[11] Wang Y, Yu X, Xu S, Bai J, Xiao R, Hu Y S, Li H, Yang X Q, Chen L and Huang X 2013 Nat. Commun. 4 2365
[12] Barpanda P, Oyama G, Nishimura S, Chung S C and Yamada A 2014 Nat. Commun. 5 4358
[13] Kubota K, Yabuuchi N, Yoshida H, Dahbi M and Komaba S 2014 MRS Bulletin 39 416
[14] Li Y, Xu S, Wu X, Yu J, Wang Y, Hu Y S, Li H C and Huang X 2015 J. Mater. Chem. A 3 71
[15] Delmas C, Braconnier J J, Fouassier C and Hagenmuller P 1981 Solid State Ionics 3–4 165
[16] Braconnier J J, Delmas C and Hagenmuller P 1982 Mater. Res. Bull. 17 993
[17] Mendiboure A, Delmas C and Hagenmuller P 1985 J. Solid State Chem. 57 323
[18] Lu Z and Dahn J R 2001 J. Electrochem. Soc. 148 A1225
[19] Okada S, Takahashi Y, Kiyabu T, Doi T, Yamaki J and Nishida T 2006 210th ECS Meeting Abstracts, MA2006-02, 201
[20] Komaba S, Takei C, Nakayama T, Ogata A and Yabuuchi N 2010 Electrochem. Commun. 12 355
[21] Carlier D, Cheng J H, Berthelot R, Guignard M, Yoncheva M, Stoyanova R, Hwang B J and Delmas C 2011 Dalton Trans. 40 9306
[22] Kim D, Kang S H, Slater M, Rood S, Vaughey J T, Karan N, Balasubramanian M and Johnson C S 2011 Adv. Energy Mater. 1 333
[23] Kim D, Lee E, Slater M, Lu W, Rood S and Johnson C S 2012 Electrochem. Commun. 18 66
[24] Komaba S, Yabuuchi N, Nakayama T, Ogata A, Ishikawa T and Nakai I 2012 Inorg. Chem. 51 6211
[25] Sathiya M, Hemalatha K, Ramesha K, Tarascon J M and Prakash A S 2012 Chem. Mater. 24 1846
[26] Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y and Komaba S 2012 Nat. Mater. 11
[27] Yabuuchi N, Yoshida H and Komaba S 2012 Electrochemistry 80 716
[28] Vassilaras P, Ma X, Li X and Ceder G 2013 J. Electrochem. Soc. 160 A207
[29] Yabuuchi N, Yano M, Yoshida H, Kuze S and Komaba S 2013 J. Electrochem. Soc. 160 A3131
[30] Yoshida H, Yabuuchi N and Komaba S 2013 Electrochem. Commun. 34 60
[31] Lee E, Lu J, Ren Y, Luo X, Zhang X,Wen J, Miller D, DeWahl, AHackney S and Key B 2014 Adv. Energy Mater. 4
[32] Li X, Wu D, Zhou Y N, Liu L, Yang X Q and Ceder G 2014 Electrochem. Commun. 49 51
[33] Sun X, Jin Y, Zhang C Y, Wen J W, Shao Y, Zang Y and Chen C H 2014 J. Mater. Chem. A 2 17268
[34] Xu J, Lee D H, Cl′ement R J, Yu X, Leskes M, Andrew, Pell J, Pintacuda G, Yang X Q, Grey C P and Meng Y S 2014 Chem. Mater. 26 1260
[35] Yu H, Guo S, Zhu Y, Ishida M and Zhou H 2014 Chem. Commun. 50 457
[36] Xu S Y, Wu X Y, Li Y M, Hu Y S and Chen L Q 2014 Chin. Phys. B 23 118202
[37] Delmas C, Fouassier C and Hagenmuller P 1980 Physica B+C 99 81
[1] Efficiently enhanced energy storage performance of Ba2B4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[2] Mg-doped layered oxide cathode for Na-ion batteries
Yuejun Ding(丁月君), Feixiang Ding(丁飞翔), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(6): 068201.
[3] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[4] Energy storage performances regulated by BiMnO3 proportion in limited solid solution films
Fei Guo(郭飞), Zhifeng Shi(史智锋), Yaping Liu(刘亚平), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2020, 29(11): 116801.
[5] High capacity sodium-rich layered oxide cathode for sodium-ion batteries
Gen-Cai Guo(郭根材), Changhao Wang(王长昊), Bang-Ming Ming(明帮铭), Si-Wei Luo(罗斯玮), Heng Su(苏恒), Bo-Ya Wang(王博亚), Ming Zhang(张铭), Hai-Jun Yu(尉海军), Ru-Zhi Wang(王如志). Chin. Phys. B, 2018, 27(11): 118801.
[6] Enhanced energy storage behaviors in free-standing antiferroelectric Pb(Zr0.95Ti0.05)O3 thin membranes
Zheng-Hu Zuo(左正笏), Qing-Feng Zhan(詹清峰), Bin Chen(陈斌), Hua-Li Yang(杨华礼), Yi-Wei Liu(刘宜伟), Lu-Ping Liu(刘鲁萍), Ya-Li Xie(谢亚丽), Run-Wei Li(李润伟). Chin. Phys. B, 2016, 25(8): 087702.
[7] A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support
Shen Yang-Wu, Ke De-Ping, Sun Yuan-Zhang, Daniel Kirschen, Wang Yi-Shen, Hu Yuan-Chao. Chin. Phys. B, 2015, 24(7): 070201.
[8] Novel copper redox-based cathode materials for room-temperature sodium-ion batteries
Xu Shu-Yin, Wu Xiao-Yan, Li Yun-Ming, Hu Yong-Sheng, Chen Li-Quan. Chin. Phys. B, 2014, 23(11): 118202.
[9] Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode
Zhang Wei-Ya, Li Yong-Li, Chang Xiao-Yong, Wang Nan. Chin. Phys. B, 2013, 22(9): 098401.
[10] Erratum to “Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery”
Zhao Liang(赵亮), Pan Hui-Lin(潘慧霖), Hu Yong-Sheng(胡勇胜), Li Hong(李泓), and Chen Li-Quan(陈立泉) . Chin. Phys. B, 2012, 21(7): 079901.
[11] Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery
Zhao Liang,Pan Hui-Lin,Hu Yong-Sheng,Li Hong,Chen Li-Quan. Chin. Phys. B, 2012, 21(2): 028201.
[1] Hou Bang-Pin, Liu Jie, Hu Ping. Sum and two-atom dipole squeezing in a system of a two-mode vacuum field interacting with two coupled atoms[J]. Chin. Phys., 2002, 11(1): 30 -34 .
[2] Sun Li-Qun, Wang Jia, Hong Tao, Tian Qian. A virtual optical probe based on evanescent wave interference[J]. Chin. Phys., 2002, 11(10): 1022 -1027 .
[3] Zhang Dong-Hai. Fragmentation of 16O nuclei in nuclear emulsion[J]. Chin. Phys., 2002, 11(12): 1254 -1258 .
[4] Fang Jian-Hui, Zhao Song-Qing. Noether's theorem of a rotational relativistic variable mass system[J]. Chin. Phys., 2002, 11(5): 445 -449 .
[5] Chen Chao, Wang Zhi-Wen. Inequalities of the electron density at the nucleus and radial expectation values of the ground state for the lithium isoelectronic sequence[J]. Chin. Phys. B, 2003, 12(6): 604 -609 .
[6] Zhang Bai-Gang, Yao Jian-Quan, Ding Xin, Zhang Hao, Wang Peng, Xu De-Gang, Yu Guo-Jun, Zhang Fan. Low-threshold, high-efficiency, high-repetition-rate optical parametric generator based on periodically poled LiNbO3[J]. Chin. Phys. B, 2004, 13(3): 364 -368 .
[7] Yang Lei, Wu Jian-Sheng, Zhang Lan-Ting. Effect of phonon scattering mechanisms on the lattice thermal conductivity of skutterudite-related compound[J]. Chin. Phys. B, 2004, 13(4): 516 -521 .
[8] Fang Da-Wei, Zhang Zai-Xuan, Zhao Shi-Long, Zhang Li-Yan, Wang Bao-Ling, Xu Shi-Qing, Jiang Zhong-Hong. Host dependent thermal stability and frequency upconversion of Er3+-doped heavy metal xyfluoride germanate glasses[J]. Chin. Phys., 2005, 14(11): 2246 -2250 .
[9] Luo Shao-Kai, Cai Jian-Le, Jia Li-Qun. A new non-Noether conserved quantity of the relativistic holonomic nonconservative systems in general Lie transformations[J]. Chin. Phys. B, 2005, 14(4): 656 -659 .
[10] Cheng Qing-Hua, Cao Li, Xu Da-Hai, Wu Da-Jin. Time evolution of the intensity correlation function in a single-mode laser driven by both the coloured pump noise with signal modulation and the quantum noise with cross-correlation between the real and imaginary parts[J]. Chin. Phys. B, 2005, 14(6): 1159 -1167 .