Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 123101    DOI: 10.1088/1674-1056/24/12/123101

Influence of a strong magnetic field on the hydrogen molecular ion using B-spline-type basis-sets

Zhang Yue-Xia, Zhang Xiao-Long
Department of Physics, Chongqing University, Chongqing 400044, China

As an improvement on our previous work [J. Phys. B: At. Mol. Opt. Phys. 45 085101 (2012)], an accurate method combining the spheroidal coordinates and B-spline basis is applied to study the ground state 1σg and low excited states 1σu, 1πg,u,1δg,u,2σg of the H2+ in magnetic fields ranging from 109 Gs (1 Gs=10-4 T) to 4.414×1013 Gs. Comparing the one-center method used in our previous work, the present method has a higher precision with a shorter computing time. Equilibrium distances of the states of the H2+ in strong magnetic fields were found to be accurate to 3~5 significant digits (s.d.) and the total energies 6~11 s.d., even for some antibonding state, such as 1πg, which is difficult for the one-center method to give reliable results while the field strength is B≥q1013 Gs. For the large disagreement in previous works, such as the equilibrium distances of the 1πg state at B=109 Gs, the present data may be used as a reference. Further, the potential energy curves (PECs) and the electronic probability density distributions (EPDDs) of the bound states 1σg, 1πu, 1δg and antibonding states 1σu, 1πg, 1δu for B=1, 10, 100, 1000 a.u. (atomic unit) are compared, so that the different influences of the magnetic fields on the chemical bonds of the bound states and antibonding states are discussed in detail.

Keywords:  magnetic field      B-spline      hydrogen molecular ion     
Received:  18 July 2015      Published:  05 December 2015
PACS:  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics) (High-precision calculations for few-electron (or few-body) atomic systems)  

Project supported by the National Natural Science Foundation of China (Grant No. 11204389) and the Natural Science Foundation Project of Chongqing (Grant Nos. CSTC2012jjA50015 and CSTC2012jjA00012).

Corresponding Authors:  Zhang Yue-Xia     E-mail:

Cite this article: 

Zhang Yue-Xia, Zhang Xiao-Long Influence of a strong magnetic field on the hydrogen molecular ion using B-spline-type basis-sets 2015 Chin. Phys. B 24 123101

[1] Zhang Y X, Liu Q and Shi T Y 2012 J. Phys. B: At. Mol. Opt. Phys. 45 085101
[2] Wille U 1988 Phys. Rev. A 38 3210
[3] Guan X X, Li B W and Taylor K T 2003 J. Phys. B: At. Mol. Opt. Phys. 36 3569
[4] Kappes U, Schmelcher P and Pacher T 1994 Phys. Rev. A 50 3775
[5] Kappes U and Schmelcher P 1994 J. Chem. Phys. 100 2878
[6] Kappes U and Schmelcher P 1995 Phys. Rev. A 51 4542
[7] Kappes U and Schmelcher P 1996 Phys. Rev. A 53 3869
[8] Vincke M and Baye D 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2605
[9] Kravchenko Y P and Liberman M A 1997 Phys. Rev. A 55 2701
[10] Baye D, Joos de ter Beerst A and Sparenberg J M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 225102
[11] Turbiner A V and López Vieyra J C 2003 Phys. Rev. A 68 012504
[12] Turbiner A V and López Vieyra J C 2004 Phys. Rev. A 69 053413
[13] Turbiner A V and López Vieyra J C 2006 Phys. Rep. 424 309
[14] Schmelcher P and Schweizer W (eds.) 1998 Atoms and Molecules in Strong External Fields (New York: Plenum)
[15] Sanwal D, Pavlov G G, Zavlin V E and Teter M A 2002 Astrophys. Lett. 574 L61
[16] Zhang Y X, Liu Q and Shi T Y 2013 Chin. Phys. Lett. 30 043101
[17] Yulian V V and Alejandro S 2004 J. Phys. B: At. Mol. Opt. Phys. 37 4101
[18] Zhang Y X, Kang S and Shi T Y 2008 Chin. Phys. Lett. 25 3946
[19] Shi T Y, Zhang Z J and Li B W 2004 Mod. Phys. Lett. B 18 113
[20] Kang S, Li J and Shi T Y 2006 J. Phys. B: At. Mol. Opt. Phys. 39 3491
[21] Qiao H X and Li B W 1999 Phys. Rev. A 60 3136
[22] Xi J H, Wu L J, He X H and Li B W 1992 Phys. Rev. A 46 5806
[23] Shi T Y, Qiao H X and Li B W 2000 J. Phys. B: At. Mol. Opt. Phys. 33 L349
[24] Guan X X, Li B W and Taylor K T 2004 J. Phys. B: At. Mol. Opt. Phys. 37 1985
[25] López Vieyra J C, Hess P and Turbiner A V 1997 Phys. Rev. A 56 4496
[26] Larsen D M 1982 Phys. Rev. A 25 1295
[27] Lai D, Salpeter E and Shapiro S L 1992 Phys. Rev. A 45 4832
[28] Vincke M and Baye D 1985 J. Phys. B: At. Mol. Opt. Phys. 18 167
[29] Ozaki J and Hayashi Y 1989 J. Phys. Soc. Jpn. 58 3564
[30] Hu S L and Shi T Y 2013 Chin. Phys. B 22 093101
[31] Baye D, Vincke M and Hesse M 2008 J. Phys. B: At. Mol. Opt. Phys. 41 055005
[1] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[2] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[3] Influence of the anisotropy on the magneto-acoustic response of magnetic surface acoustic wave resonators
Yawei Lu(鲁亚巍), Wenbin Hu(胡文彬), Wan Liu(刘婉), Feiming Bai(白飞明). Chin. Phys. B, 2020, 29(6): 067504.
[4] Electrical properties of Ca3-xSmxCo4O9+δ ceramics preparedunder magnetic field
Xiu-Rong Qu(曲秀荣), Yan-Yan Xu(徐岩岩), Shu-Chen Lü(吕树臣), Jian-Min Hu(胡建民). Chin. Phys. B, 2020, 29(4): 046103.
[5] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[6] Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(1): 010307.
[7] Novel transit-time oscillator (TTO) combining advantages of radial-line and axial TTO
Wei-Li Xu(徐伟力), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Li-Li Song(宋莉莉), Bing-Fang Deng(邓秉方), Ouzhixiong Dai(戴欧志雄), Xing-Jun Ge(葛行军). Chin. Phys. B, 2019, 28(8): 085201.
[8] Axial magnetic field effect in numerical analysis of high power Cherenkov free electron laser
F Bazouband, B Maraghechi. Chin. Phys. B, 2019, 28(6): 064101.
[9] Orientation and alignment during materials processing under high magnetic fields
Zhong-Ming Ren(任忠鸣), Jiang Wang(王江), Rui-Xin Zhao(赵睿鑫). Chin. Phys. B, 2019, 28(4): 048301.
[10] Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV- center
Lin Zhao(赵琳), Donghui Yue(岳冬辉), Cailong Liu(刘才龙), Min Wang(王敏), Yonghao Han(韩永昊), Chunxiao Gao(高春晓). Chin. Phys. B, 2019, 28(3): 030702.
[11] Magnetochemistry and chemical synthesis
Lin Hu(胡林), Guoliang Xia(夏国良), Qianwang Chen(陈乾旺). Chin. Phys. B, 2019, 28(3): 037102.
[12] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[13] Optical response of an inverted InAs/GaSb quantum well in an in-plane magnetic field
Xiaoguang Wu(吴晓光). Chin. Phys. B, 2019, 28(10): 107302.
[14] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
[15] Laser frequency offset-locking using electromagnetically induced transparency spectroscopy of 85Rb in magnetic field
Han-Mu Wang(王汉睦), Hong Cheng(成红), Shan-Shan Zhang(张珊珊), Pei-Pei Xin(辛培培), Zi-Shan Xu(徐子珊), Hong-Ping Liu(刘红平). Chin. Phys. B, 2018, 27(9): 094205.
No Suggested Reading articles found!