Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 014201    DOI: 10.1088/1674-1056/24/1/014201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broadband perfect polarization conversion metasurfaces

Chen Hong-Ya (陈红雅)a, Wang Jia-Fu (王甲富)a, Ma Hua (马华)a, Qu Shao-Bo (屈绍波)a, Zhang Jie-Qiu (张介秋)a, Xu Zhuo (徐卓)b, Zhang An-Xue (张安学)c
a College of Science, Air Force Engineering University, Xi'an 710051, China;
b Electronic Materials Research Laboratory, Xi'an Jiaotong University, Xi'an 710049, China;
c School of Electronics & Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  We propose a broadband perfect polarization conversion metasurface composed of copper sheet-backed asymmetric double spilt ring resonator (DSRR). The broadband perfect polarization convertibility results from metallic ground and multiple plasmon resonances of the DSRR. Physics of plasmon resonances are governed by the electric and magnetic resonances. Both the simulation and measured results show that the polarization conversion ratio (PCR) is higher than 99% for both x- and y-polarized normally incident EM waves and the fractional bandwidth is about 34.5%. The metasurface possesses the merits of high PCR and broad bandwidth, and thus has great application values in novel polarization-control devices.
Keywords:  metasurface      perfect polarization conversion      multiple plasmon resonances  
Received:  19 March 2014      Revised:  14 August 2014      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Ja (Polarization)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  92.60.Ta (Electromagnetic wave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 11204378, 11274389, 11304393, and 61302023), the National Science Foundation for Post-doctoral Scientists of China (Grant Nos. 2013M532131 and 2013M532221), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM6005), and the Aviation Science Foundation of China (Grant Nos. 20132796018 and 20123196015).
Corresponding Authors:  Ma Hua, Qu Shao-Bo     E-mail:  mahuar@163.com;qushaobo@mail.xjtu.edu.cn

Cite this article: 

Chen Hong-Ya (陈红雅), Wang Jia-Fu (王甲富), Ma Hua (马华), Qu Shao-Bo (屈绍波), Zhang Jie-Qiu (张介秋), Xu Zhuo (徐卓), Zhang An-Xue (张安学) Broadband perfect polarization conversion metasurfaces 2015 Chin. Phys. B 24 014201

[1] Zhao Y and Alù A 2011 Phys. Rev. B 84 205428
[2] Wang J F, Qu S B, Xu Z, Ma H, Xia S, Yang Y M, Wu X, Wang Q and Chen C H 2010 Phys. Rev. E 81 036601
[3] Ma H, Qu S B, Wu X, Zhang J Q and Wang J F 2009 Chin. Phys. B 18 1025
[4] Shrekenhamer D, Chen W C and Padilla W J 2013 Phys. Rev. Lett. 110 177403
[5] Zhu W, Rukhlenko I D and Premaratne M 2013 Appl. Phys. Lett. 102 011910
[6] Zhang K, Fu J H, Xiao LY, Wu Q and Li L W 2013 J. Appl. Phys. 113 084908
[7] Qin G, Wang J F, Yan M B, Chen W, Chen H Y and Li Y F 2013 Chin. Phys. B 22 087302
[8] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304
[9] Wei A Y, Cao Y, Fan Y C, Yu X and Li H Q 2011 Appl. Phys. Lett. 99 221907
[10] Yu N F, Aieta F, Genevet P, Kats M A, Gaburro Z and Capasso F 2012 Nano Lett. 12 6328
[11] Feng M D, Wang J F, Ma H, Mo W D, Ye H J and Qu S B 2013 J. Appl. Phys. 114 074508
[12] Hao J M, Ren Q J, An Z H, Huang X Q, Chen Z H, Qiu M and Zhou L 2009 Phys. Rev. A 80 023807
[13] Zhao Y and Al'u A 2013 Nano Lett. 13 1086
[14] Zhu H L, Cheung S W, Chung K L and Yuk T I 2013 IEEE Trans. Antenn. Propag. 61 4615
[15] Chiang Y J and Yen T J 2013 Appl. Phys. Lett. 102 011129
[16] Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908
[17] Zhao Y, Belkin M A and Al'u A 2012 Nat. Commun. 3 870
[18] Huang Y H, Zhou Y and Wu S T 2007 Opt. Express 15 6414
[19] Chen C, Wu S and Yen T 2008 Appl. Phys. Lett. 93 034110
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[5] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[8] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[9] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[10] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[11] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[14] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
[15] Asymmetrical photonic spin Hall effect based on dielectric metasurfaces
Guangzhou Geng(耿广州), Ruhao Pan(潘如豪), Wei Zhu(朱维), and Junjie Li(李俊杰). Chin. Phys. B, 2022, 31(12): 124207.
No Suggested Reading articles found!