Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 010602    DOI: 10.1088/1674-1056/24/1/010602
GENERAL Prev   Next  

Design and test of the microwave cavity in an optically-pumped Rubidium beam frequency standard

Liu Chang (刘畅), Wang Yan-Hui (王延辉)
School of Electronics engineering and Computer Science, Peking University, Beijing 100871, China
Abstract  We are developing a compact rubidium atomic beam frequency standard with optical pumping and detection. The cavity for microwave interrogation is an important part of the clock. The cavity in our design is a Ramsey-type, E-bend one, which is the same as the conventional method in most cesium beam clocks. Requirements for the design are proposed based on the frequency shift associated with the cavity. The basic structure of the cavity is given by theoretical analysis and detailed dimensions are determined by means of electromagnetic field simulation with the help of commercial software. The cavity is manufactured and fabricated successfully. The preliminary test result of the cavity is given, which is in good agreement with the simulation. The resonant frequency is 6.835 GHz, equal to the clock transition frequency of 87Rb, and the loaded quality factor is 500. These values are adjustable with posts outside the cavity. Estimations on the Ramsey line width and several frequency shifts are made.
Keywords:  rubidium beam clock      optical pumping      microwave cavity      frequency shift  
Received:  21 June 2014      Revised:  29 July 2014      Accepted manuscript online: 
PACS:  06.30.Ft (Time and frequency)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174015).
Corresponding Authors:  Wang Yan-Hui     E-mail:  wangyanhui@pku.edu.cn

Cite this article: 

Liu Chang (刘畅), Wang Yan-Hui (王延辉) Design and test of the microwave cavity in an optically-pumped Rubidium beam frequency standard 2015 Chin. Phys. B 24 010602

[1] Cutler L S 2005 Metrologia 42 S90
[2] Lecomte S, Haldimann M, Ruffieux R, Berthoud P and Thomann P 2007 Frequency Control Symposium, May 29-June 1, 2007, Geneva, p. 1127
[3] Hagimoto K, Koga Y and Ikegami T 2008 IEEE Trans. Instrum. Meas. 57 2212
[4] Sallot C, Baldy M, Gin D and Petit R 2003 Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, May 5-8, 2003, Tampa, p. 100
[5] Zhao F, Gu S H and Liu G B 2009 Chin. Phys. B 18 3839
[6] Besedina A, Gevorkyan A and Zholnerov V 2006 Frequency and Time Forum (EFTF), 2006 20th European, Braunschweig, p. 261
[7] Arditi M and Cerez P 1972 IEEE Trans. Instrum. Meas. 21 391
[8] Wang Y H, Huang J Q, Gu Y, Liu S Q, Dong T Q and Lu Z H 2011 Journal of the European Optical Society-Rapid Publication 6 11005
[9] Ramsey N F 1956 Molecular Beams (1st edn.) (Oxford: Clarendon Press)
[10] Guerandel S, De Clercq E, Barillet R and Audoin C 2007 International Frequency Control Symposium, May 29-June 1, 2007, Geneva, p. 1050
[11] Mungall A G and Daams H 1970 Metrologia 6 60
[12] De Marchi A, Shirley J, Glaze D J and Drullinger R 1988 IEEE Trans. Instrum. Meas. 37 185
[13] Bian F G, Wei R, Lu D S and Wang Y Z 2006 Chin. J. Lasers 33 1186
[14] Liu C and Wang Y H 2013 European Frequency and Time Forum and International Frequency Control Symposium (EFTF/IFCS), Prague, p. 761
[15] Audoin C, Dimarcq N, Giordano V and Viennet J 1992 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39 412
[16] Pozar D M 2006 Microwave Engineering (3rd edn.) (Wiley)
[17] Marcuvitz N 1951 Waveguide Handbook (1st edn.) (New York: McGraw-Hill)
[18] Bauch A, Heindorff T and Schroeder R 1985 IEEE Trans. Instrum. Meas. 34 136
[19] Vanier J and Audoin C 1989 The Quantum Physics of Atomic Frequency Standards (Bristol; Philadelphia: A. Hilger)
[20] Lax B 1962 Microwave Ferrites and Ferrimagnetics (New York: McGraw-Hill)
[21] Chassagne L, Hamouda F, Theobald G and Cerez P 2001 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48 1513
[1] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[2] A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer
Yu He(贺羽), Runqi Kang(康润琪), Zhifu Shi(石致富), Xing Rong(荣星), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2022, 31(11): 117601.
[3] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[4] An effective pumping method for increasing atomic utilization in a compact cold atom clock
Xin-Chuan Ouyang(欧阳鑫川), Bo-Wen Yang(杨博文), Jian-Liao Deng(邓见辽), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hang-Hang Qi(亓航航), Qing-Qing Hu(胡青青), and Hua-Dong Cheng(成华东). Chin. Phys. B, 2021, 30(8): 083202.
[5] Evaluation of second-order Zeeman frequency shift in NTSC-F2
Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Yang Bai(白杨), Fan Yang(杨帆), Yong Guan(管勇), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2021, 30(7): 070601.
[6] Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity
Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平). Chin. Phys. B, 2021, 30(6): 064211.
[7] Improvement of the short-term stability of atomic fountain clock with state preparation by two-laser optical pumping
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Shao-Yang Dai(戴少阳), Ya-Ni Zuo(左娅妮), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(5): 050602.
[8] Polarization and fundamental sensitivity of 39K (133Cs)-85Rb-21Neco-magnetometers
Jian-Hua Liu(刘建华), Dong-Yang Jing(靖东洋), Lin Zhuang(庄琳), Wei Quan(全伟), Jiancheng Fang(房建成), Wu-Ming Liu(刘伍明). Chin. Phys. B, 2020, 29(4): 043206.
[9] Comparative calculation on Li+ solvation in common organic electrolyte solvents for lithium ion batteries
Qi Liu(刘琦), Feng Wu(吴锋), Daobin Mu(穆道斌), Borong Wu(吴伯荣). Chin. Phys. B, 2020, 29(4): 048202.
[10] Influence of pump intensity on atomic spin relaxation in a vapor cell
Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(11): 117601.
[11] Effect of external magnetic field on the shift of resonant frequency in photoassociation of ultracold Cs atoms
Pengwei Li(李鹏伟), Yuqing Li(李玉清), Guosheng Feng(冯国胜), Jizhou Wu(武寄洲), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(1): 013702.
[12] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[13] Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(9): 093301.
[14] Parameter analysis for a nuclear magnetic resonance gyroscope based on bf133Cs-129Xe/131Xe
Da-Wei Zhang(张大伟), Zheng-Yi Xu(徐正一), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(2): 023201.
[15] Broadband tunable Raman soliton self-frequency shift to mid-infrared band in a highly birefringent microstructure fiber
Wei Wang(王伟), Xin-Ying Bi(毕新英), Jun-Qi Wang(王珺琪), Yu-Wei Qu(屈玉玮), Ying Han(韩颖), Gui-Yao Zhou(周桂耀), Yue-Feng Qi(齐跃峰). Chin. Phys. B, 2016, 25(7): 074206.
No Suggested Reading articles found!