Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064217    DOI: 10.1088/1674-1056/23/6/064217
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tunable microwave signal generation based on an Opto-DMD processor and a photonic crystal fiber

Wang Taoa, Sang Xin-Zhua, Yan Bin-Bina, Ai Qib, Li Yana, Chen Xiaob, Zhang Yingb, Chen Gen-Xiangb, Song Fei-Juna, Zhang Xiaa, Wang Kui-Rua, Yuan Jin-Huia, Yu Chong-Xiua, Xiao Fengc, Alameh Kamalc
a State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
b College of Science, Minzu University of China, Beijing 100081, China;
c WA Center of Excellence for MicroPhotonic System, Electron Science Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia
Abstract  Frequency-tunable microwave signal generation is proposed and experimentally demonstrated with a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber ring laser based on a digital Opto-DMD processor and four-wave mixing (FWM) in a high-nonlinear photonic crystal fiber (PCF). The high-nonlinear PCF is employed for the generation of the FWM to obtain stable and uniform dual-wavelength oscillation. Two different short passive sub-ring cavities in the main ring cavity serve as mode filters to make SLM lasing. The two lasing wavelengths are electronically selected by loading different gratings on the Opto-DMD processor controlled with a computer. The wavelength spacing can be smartly adjusted from 0.165 nm to 1.08 nm within a tuning accuracy of 0.055 nm. Two microwave signals at 17.23 GHz and 27.47 GHz are achieved. The stability of the microwave signal is discussed. The system has the ability to generate a 137.36-GHz photonic millimeter signal at room temperature.
Keywords:  fiber lasers      four-wave mixing      Opto-DMD processor      tunable microwave signal  
Received:  28 September 2013      Revised:  19 November 2013      Published:  15 June 2014
PACS:  42.55.Wd (Fiber lasers)  
  42.55.Tv (Photonic crystal lasers and coherent effects)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB327605), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20120005120021), the Fundamental Research Funds for the Central Universities, China (Grant No. 2013RC1202), the Program for New Century Excellent Talents in University, China (Grant No. NECT-11-0596), and the Beijing Nova Program, China (Grant No. 2011066).
Corresponding Authors:  Wang Tao     E-mail:  tomwangbupt@163.com

Cite this article: 

Wang Tao, Sang Xin-Zhu, Yan Bin-Bin, Ai Qi, Li Yan, Chen Xiao, Zhang Ying, Chen Gen-Xiang, Song Fei-Jun, Zhang Xia, Wang Kui-Ru, Yuan Jin-Hui, Yu Chong-Xiu, Xiao Feng, Alameh Kamal Tunable microwave signal generation based on an Opto-DMD processor and a photonic crystal fiber 2014 Chin. Phys. B 23 064217

[1] O'Reilly J J, Lane P M, Heidemann R and Hofstertt R 1992 Electron. Lett. 28 2309
[2] Hedekvist P O, Olsson B E and Wiberg A 2004 Journal of Lightwave Technology 22 882
[3] GlieseU, Nielsen T N, Bruun M, Christensen E L, Stubkjaer K E, Lindgren S and Broberg B 1992 IEEE Photon. Technol. Lett. 4 936
[4] Bordonaalli A C, Walton C and Seeds A 1999 Journal of Lightwave Technology 17 328
[5] Genest J, Chamberl M, Tremblay P and Tetu M 1997 IEEE J. Quantum Electron. 33 989
[6] Fan Z and Dagenais M 1997 IEEE Trans. Microwave Theory Technol. 45 1296
[7] Goldberg L, Taylor H F, Weller J F and Bloom D M 1983 Electron. Lett. 19 491
[8] Williams K J, Goldberg L, Esman R D, Dagenais M and Weller J F 1989 Electron. Lett. 25 1242
[9] Chen X F, Deng Z C and Yao J P 2006 IEEE Trans. Microwave Theroy Technol. 54 804
[10] Chen G J, Huang D X, Zhang X L and Cao H 2008 Opt. Lett. 33 554
[11] Peng L, Sang X Z, Yan B B, Chen X, Wang Y, Zhang Y, Xiao F and Alameh K 2012 Opt. Laser Technol. 44 935
[12] Xiao F, Alameh K and Lee S 2009 Opt. Express 17 18676
[13] Wang W, Meng H, Wu X, Xue H, Tan C and Huang X 2012 IEEE Photon. Technol. Lett. 24 470
[14] Dana D, Walter M D and John S 2003 SPIE, January 20, 2003, San Jose, CA, USA, p. 4985
[15] Tang J X 1990 "Optical Beat and Interference" College Phys. p. 10
[16] Wang H Y and Xu X S 2013 Chin. Phys. B 22 054205
[17] Liu X M, Zhou X Q and Lu C 2005 Opt. Lett. 30 2257
[18] Feng T, Yan F P, Li Q, Peng W J, Feng S C, Tan S Y and Wen X D 2013 Chin. Phys. B 22 014208
[19] Lee C C, Chen Y K and Liaw S K 1998 Opt. Lett. 23 358
[20] Onodera N 1997 Electron. Lett. 33 962
[1] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[2] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[3] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[4] The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers
Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静). Chin. Phys. B, 2019, 28(8): 084209.
[5] Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber
Jinmei Yao(姚金妹), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2019, 28(6): 064205.
[6] Generation of wide-bandwidth pulse with graphene saturable absorber based on tapered fiber
Ren-Li Zhang(张仁栗), Jun Wang(王俊), Mei-Song Liao(廖梅松), Xia Li(李夏), Pei-Wen Guan(关珮雯), Yin-Yao Liu(刘银垚), Yan Zhou(周延), Wei-Qing Gao(高伟清). Chin. Phys. B, 2019, 28(3): 034203.
[7] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[8] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[9] Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings
Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平). Chin. Phys. B, 2019, 28(10): 104211.
[10] Mode-locked fiber laser with MoSe2 saturable absorber based on evanescent field
Ren-Li Zhang(张仁栗), Jun Wang(王俊), Xiao-Yan Zhang(张晓艳), Jin-Tian Lin(林锦添), Xia Li(李夏), Pei-Wen Kuan(关珮雯), Yan Zhou(周延), Mei-Song Liao(廖梅松), Wei-Qing Gao(高伟清). Chin. Phys. B, 2019, 28(1): 014207.
[11] Two-dimensional materials-decorated microfiber devices for pulse generation and shaping in fiber lasers
Zhi-Chao Luo(罗智超), Meng Liu(刘萌), Ai-Ping Luo(罗爱平), Wen-Cheng Xu(徐文成). Chin. Phys. B, 2018, 27(9): 094215.
[12] Femtosecond Tm-Ho co-doped fiber laser using a bulk-structured Bi2Se3 topological insulator
Jinho Lee(李珍昊), Ju Han Lee(李周翰). Chin. Phys. B, 2018, 27(9): 094219.
[13] Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser
Zhen-Dong Chen(陈振东), Yong-Gang Wang(王勇刚), Lu Li(李璐), Rui-Dong Lv(吕瑞东), Liang-Lei Wei(韦良雷), Si-Cong Liu(刘思聪), Jiang Wang(王江), Xi Wang(王茜). Chin. Phys. B, 2018, 27(8): 084206.
[14] Sb2Te3 mode-locked ultrafast fiber laser at 1.93 μm
Jintao Wang(王金涛), Jinde Yin(尹金德), Tingchao He(贺廷超), Peiguang Yan(闫培光). Chin. Phys. B, 2018, 27(8): 084214.
[15] Generation and evolution of multiple operation states in passively mode-locked thulium-doped fiber laser by using a graphene-covered-microfiber
Xiao-Fa Wang(王小发), Jun-Hong Zhang(张俊红), Xiao-Ling Peng(彭晓玲), Xue-Feng Mao(毛雪峰). Chin. Phys. B, 2018, 27(8): 084215.
No Suggested Reading articles found!