Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064205    DOI: 10.1088/1674-1056/23/6/064205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

Liu Qianga b, Huang Hong-Huab, Wang Yaoc, Wang Gui-Shib d, Cao Zhen-Songb, Liu Kunb d, Chen Wei-Donge, Gao Xiao-Mingb d
a Department of Optics & Optical Engineering, University of Science and Technology of China, Hefei 230026, China;
b Key Laboratory of Atmospheric Composition and Optical Radiation, Chinese Academy of Sciences, Hefei 230031, China;
c Institute for Environmental Reference Materials, Ministry of Environmental Protection, Beijing 100029, China;
d Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
e Laboratoire de Physicochimie del'Atmosphére, Université du Littoral Côte d'Opale, 189A, Av, Maurice Schumann, 59140 Dunkerque, France
Abstract  The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm-1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol.
Keywords:  photoacoustic spectrometer      atmospheric aerosols      absorption coefficient      absorption Ångström exponent  
Received:  19 August 2013      Revised:  27 November 2013      Published:  15 June 2014
PACS:  42.62.Fi (Laser spectroscopy)  
  42.68.Jg (Effects of aerosols?)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation, Chinese Academy of Sciences, and the National Natural Science Foundation of China (Grant Nos. 41175036 and 41205120).
Corresponding Authors:  Gao Xiao-Ming     E-mail:  xmgao@aiofm.ac.cn

Cite this article: 

Liu Qiang, Huang Hong-Hua, Wang Yao, Wang Gui-Shi, Cao Zhen-Song, Liu Kun, Chen Wei-Dong, Gao Xiao-Ming Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer 2014 Chin. Phys. B 23 064205

[1] Schulz M, Textor C, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Dentener F, Guibert S, Isaksen I, Iversen T, Koch D, Kirkevåg A, Liu X, Montanaro V, Myhre G, Penner J, Pitari G, Reddy S, Seland Ø, Stier P and Takemura 2006 Atmos. Chem. Phys. 6 5225
[2] Wang H H and Sun X M 2012 Chin. Phys. B 21 054204
[3] Han Y, Wang T J, Rao R Z and Wang Y J 2008 Acta Phys. Sin. 57 7396 (in Chinese)
[4] Stier P, Seinfeld J H, Kinne S and Boucher O 2007 Atmos. Chem. Phys. 7 5237
[5] Si F Q, Liu J G, Xie P H, Zhang Y J, Liu W Q, Hiroaki K, Liu C, Nofel L and Nobuo T 2005 Chin. Phys. 14 2360
[6] Lack D A, Tie X X, Bofinger N D, Wiegand A N and Madronich S 2004 J. Geophys. Res. 109 D03203
[7] Weingartner E, Saathoff H, Schnaiter M, Streit N, Bitnar B and Baltensperger U 2003 J. Aerosol Sci. 34 1445
[8] Petzold A, Busen R, Schröder F P, Baumann R, Kuhn M, Ström J, Hagen D E, Whitefield P D, Baumgardner D, Arnold F, Borrmann S and Schumann U 1997 J. Geophys. Res. 102 D25
[9] Arnott W P, Hamasha K, Moosmüller H, Sheridan P J and Ogren J A 2005 Aerosol Sci. Technol. 39 17
[10] Vander W R, Ticich T M and Stephns A B 1998 Appl. Phys. B 67 115
[11] Vander W R and Choi M Y 1999 Carbon 37 231
[12] Smith J D and Atkinson D B 2001 Analyst. 126 1216
[13] Varma R, Moosmüller H and Arnott W P 2003 Opt. Lett. 28 1007
[14] Tibor Ajtai, Ágnes Filtp, Noémi Utry, Martin Schnaiter, Claudia Linke, Zoltán Bozóki, Gábor Szabó and Thomas Leisner 2011 J. Arosol Sci. 42 859
[15] Moosmüller H, Chakrabarty R K and Arnott W P 2009 J. Quant. Spectrosc. Radiat. Transfer 110 844
[16] Bruce C W and Pinnick R G 1977 Appl. Opt. 16 1762
[17] Terhune R W and Anderson J E 1977 Opt. Lett. 1 70
[18] Beck H A, Niessner R and Haisch C 2003 Anal. Bional. Chem. 375 1136
[19] Arnott W P, Moosmüller H, Rogers C F, Jin T and Bruch R 1999 Atmos. Environ. 33 2845
[20] Lewis K, Arnott W P, Moosmüller H and Wold C E 2008 J. Geophs. Res. 113 D16203
[21] Gyawali M, Arnott W P, Zaveri R A, Song C, Moosmüller H, Liu L, Mishchenko M I, Chen L W A, Green M C, Watson J G and Chow J C 2012 Atmos. Chem. Phys. 12 2587
[22] Arnott W P, Zielinska B, Rogers C F, Sagebiel J, Park K, Chow J, Moosmüller H, Watson J G, Kelly K, Wanger D, Sarofim A, Lighty J and Palmer G 2005 Environ. Sci. Technol. 39 5398
[23] Tibor Ajtai, Ágnes Filtp, Martin Schnaiter, Claudia Linke, Marlen Vragel, Zoltán Bozóki, Gábor Szabó and Thomas Leisner 2010 J. Arosol Sci. 41 1020
[24] Tibor Ajtai, Ágnes Filtp, Gabriella Kecskeméti, Béla Hopp, Zoltán Bozóki and Gábor Szabó 2010 Appl. Phys. A 103 1165
[25] Liu Q, Niu M S, Wang G S, Cao Z S, Liu K, Chen W D and Gao X M 2013 Spectrosc. Spect. Anal. 33 1729 (in Chinese)
[26] Arnott W P, Moosmüller H and Walker J W 2000 Rev. Sci. Instrum. 71 4545
[27] The HITRAN database can be found at http://www.hitran.com
[28] Elia A, Franco C D, Spagnolo V, Lugará P M and Scamarcio G 2009 Sensors 9 2697
[29] Arnott W P, Moosmüller H, Sheridan P J, Ogren J A, Raspet R, Slaton W V, Hand J L, Kreidenweis S M and Collett J L 2003 J. Geophys. Res. 108 4034
[30] Arthur Sedlacek and Jeonghoon Lee 2007 Aerosol Sci. Tech. 41 1089
[31] Bergstrom R W, Russell P B and Hignett 2002 J. Atmos. Sci. 59 567
[32] Bond T C, Bergstrom R W 2006 Aerosol Sci. Tech. 40 27
[33] Gyawali M, Arnott W P, Lewis K and Moosmüller H 2009 Atmos. Chem. Phys. 9 8007
[34] Flowers B A, Dubey M K, Mazzoleni C, Stone E A, Schauer J J, Kim S W and Yoon S C 2010 Atmos. Chem. Phys. 10 10387
[1] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[2] Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms
N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua. Chin. Phys. B, 2019, 28(6): 063202.
[3] Analysis of highly efficient perovskite solar cells with inorganic hole transport material
I Kabir, S A Mahmood. Chin. Phys. B, 2019, 28(12): 128801.
[4] Theoretical investigation of the pressure broadening D1 and D2 lines of cesium atoms colliding with ground-state helium atoms
Moussaoui Abdelaziz, Alioua Kamel, Allouche Abdul-rahman, Bouledroua Moncef. Chin. Phys. B, 2019, 28(10): 103103.
[5] Light absorption coefficients of ionic liquids under electric field
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Ju-Lius Caesar Puoza, Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2019, 28(1): 017801.
[6] Pressure-broadened atomic Li(2s-2p) line perturbed by ground neon atoms in the spectral wings and core
Sabri Bouchoucha, Kamel Alioua, Moncef Bouledroua. Chin. Phys. B, 2017, 26(7): 073202.
[7] Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot
Ahmed S Jbara, Zulkafli Othaman, M A Saeed. Chin. Phys. B, 2016, 25(5): 057801.
[8] Nonlinear optical characterization of phosphate glasses based on ZnO using the Z-scan technique
Masoumeh Shokati Mojdehi, Wan Mahmood Mat Yunus, Khor Shing Fhan, Zainal Abidin Talib, N. Tamchek. Chin. Phys. B, 2013, 22(11): 117802.
[9] Monitoring the reaction between AlCl3 and o-xylene by using terahertz spectroscopy
Jin Wu-Jun, Li Tao, Zhao Kun, Zhao Hui. Chin. Phys. B, 2013, 22(11): 118701.
[10] The effect of an optical pump on the absorption coefficient of magnesium-doped near-stoichiometric lithium niobate in terahertz range
Zuo Zhi-Gao, Ling Fu-Ri, Ma De-Cai, Wu Liang, Liu Jin-Song, Yao Jian-Quan. Chin. Phys. B, 2013, 22(10): 107802.
[11] Intersubband absorption with difference-frequency generation in GaAs asymmetric quantum wells
Cao Xiao-Long, Li Zhong-Yang, Yao Jian-Quan, Wang Yu-Ye, Zhu Neng-Nian, Zhong Kai, Xu De-Gang. Chin. Phys. B, 2012, 21(8): 084207.
[12] Band structure and absorption coefficient in GaN/AlGaN quantum wires
Yao Wen-Jie, Yu Zhong-Yuan, Liu Yu-Min. Chin. Phys. B, 2010, 19(7): 077101.
[13] The simulation of temperature dependence of responsivity and response time for 6H-SiC UV photodetector
Zhang Yi-Men, Zhou Yong-Hua, Zhang Yu-Ming. Chin. Phys. B, 2007, 16(5): 1276-1279.
[14] SiCGe/SiC heterojunction and its MEDICI simulation of optoelectronic characteristics
Lü Zheng, Chen Zhi-Ming, Pu Hong-Bin. Chin. Phys. B, 2005, 14(6): 1255-1258.
No Suggested Reading articles found!