Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 117802    DOI: 10.1088/1674-1056/22/11/117802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Nonlinear optical characterization of phosphate glasses based on ZnO using the Z-scan technique

Masoumeh Shokati Mojdehia, Wan Mahmood Mat Yunusa, Khor Shing Fhanb, Zainal Abidin Taliba, N. Tamcheka
a Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
b School of Electrical Systems Engineering, Universiti Malaysia Perlis, Campus Pauh Putra, 02600 Arau, Perlis Malaysia
Abstract  The nonlinear optical properties of a phosphate vitreous system [(ZnO)x-(MgO)30-x-(P2O5)70], where x=8, 10, 15, 18, and 20 mol% synthesized through the melt-quenching technique have been investigated by using the Z-scan technique. In the experiment, a continuous-wave laser with a wavelength of 405 nm was utilized to determine the sign and value of the nonlinear refractive (NLR) index and the absorption coefficient with closed and opened apertures of the Z-scan setup. The NLR index was found to increase with the ZnO concentration in the glass samples by an order of 10-10 cm2·W-1. The real and imaginary parts of the third-order nonlinear susceptibility were calculated by referring to the NLR index (n2) and absorption coefficient (β) of the samples. The value of the third-order nonlinear susceptibility was presented by nonlinear refractive or absorptive behavior of phosphate glasses for proper utilization in nonlinear optical devices. Based on the measurement, the positive sign of the NLR index shows a self-focusing phenomenon. The figures of merit for each sample were calculated to judge the potential of phosphate glasses for application in optical switching.
Keywords:  Z-scan technique      nonlinear refractive index      nonlinear absorption coefficient      phosphate glasses  
Received:  27 March 2013      Revised:  07 June 2013      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.20.Mg (Photorefractive effects)  
Fund: Project supported by the Ministry of Higher Education (Grant Nos. 1-11-08-664FR/F1 and 01-0410-861FR).
Corresponding Authors:  Masoumeh Shokati Mojdehi     E-mail:  masoumehshokati@yahoo.com

Cite this article: 

Masoumeh Shokati Mojdehi, Wan Mahmood Mat Yunus, Khor Shing Fhan, Zainal Abidin Talib, N. Tamchek Nonlinear optical characterization of phosphate glasses based on ZnO using the Z-scan technique 2013 Chin. Phys. B 22 117802

[1] Khattak G D, Mekki A and Wenger L E 2009 J. Non-Cryst. Solids. 355 2148
[2] Sreeja R, John J, Aneesh P M and Jayaraj M K 2010 Opt. Commun. 283 2908
[3] Shahriari E and Yunus W M M 2011 Dig. J. Nanomater. Bios. 5 939
[4] Rashidian M and Dorranian D 2012 Opt Eng. 51 089001
[5] Lorance D, Aranyosive M, Buczynski R and Stepian R 2008 Appl. Phys. B 93 531
[6] Santos C C, Guedes I, Loong C K, Boatner L A, Moura L A, De Araujo M T, Jacinto C and Vermelho M V D 2009 J. Phys. D 43 1
[7] Zhou J, Teng Y, Ye S, Liu X and Qiu J 2010 Opt. Mater. 33 153
[8] Vijaya Prakash G, Jagannathan R and Narayana Rao D 2002 Mater. Lett. 57 134
[9] Ogale S B, Vispute R D, Hullavarad S, Pugel D E, Kulkarni V, Dhar S, Takeuchi I and Venkatesan T 2005 Thin Films and Heterostructures For Oxide Electronics (New York: Springer) pp. 301–330
[10] Jamshidi-Ghaleh K, Mansour N and Namdar A 2005 Laser Phys. 15 1714
[11] Liu X and Tomita Y 2012 Phys. Res. Int. 2012 9
[12] Song Y L, Xia C H, Chen Z M and Wu Y Q 2005 Acta Phys. Sin. 54 5168 (in Chinese)
[13] Tsigaridas G, Polyzos I, Persephonis P and Giannetas V 2006 Opt. Commun. 266 284
[14] Kandasamy K, Divakar Rao K, Deshpande R, Puntambekar P N, Singh B P, Shetty S J and Srivastava T S 1997 Appl. Phys. B 64 479
[15] Zhang W P, Tian J G, Liu Z B, Zhou W Y, Mei C, Song F and Zhang C P 2004 Acta Phys. Sin. 53 1820 (in Chinese)
[16] Suresh S and Arivuoli D 2012 Rev. Adv. Mater Sci. 30 243
[17] Quemard C, Smektala F, Couderc V, Barthelemy A and Lucas J 2001 J. Phys. Chem. Solids 62 1435
[18] Bing G and Wang H T J. Appl. Phys. 96 963
[19] Natarajan V, Siavanesan T and Pandi S 2010 I.N.D.J.S.T. 3 897
[20] Gopinath G, Soljacic M, Ippen E, Fulflyigin V, King W and Shurgalin M 2004 J. Appl. Phys. 96 6931
[21] Huang T, Hao Z, Gong H, Liu Z, Xiao S, Li S, Zhai Y, You S, Wang Q and Qin J 2008 Chem. Phys. Lett. 451 213
[22] Hendry E, Yang J, Lee J Y, Mi J and Ji W 2006 Appl. Phys. Lett. 88 083107
[23] Gong H M, Zhou Z K, Xiao S, Song H, Su X R, Li M and Wang Q Q 2007 Chin. Phys. Lett. 24 3443
[24] Chen S Q, Liu Z B, Zang W P, Tian J G, Zhou W Y and Zhang C P 2006 Acta Phys. Sin. 55 1211 (in Chinese)
[25] Khor S F, Talib Z A, Daud W M, Sidek H A A and Ng B H 2009 J. Non-Cryst. Solids 355 2533
[26] Al-Ahmad A Y, Shabeeb G M, Abdullah A Q and Ziadan K M 2011 Optik. 122 1885
[27] Gayathri C and Ramalingam A 2008 Optics 119 409
[28] Samineni P, Perret Z, Warren W S and Fischer M 2010 Opt. Express 18 12727
[29] Stepanov A, Ganeev R A, Ryasnyansky A I and Usmanov T 2003 Nucl. Instrum Meth B 206 624
[30] Fang G Y, Song Y L, Wang Y X, Zhang X R, Qu S L, Li C F, Song L C, Hu Q M and Liu P C 2000 Acta Phys. Sin. 49 1499 (in Chinese)
[31] Gomez S L, Cuppo F L S and Figueiredo Netos A M 2003 Braz. J. Phys. 33 813
[32] Dorranian D, Golian Y and Hojabri A 2012 J. T. A. P. 6 1
[33] Palfalvi L, Toth B, Almasi G, Fulop J and Hebling J 2009 Appl. Phys. B 97 679
[34] Wang Y H, Li H Q, Lu J D and Wang R W 2011 Chin. Phys. Lett. 28 116101
[35] Jun H S, Lee K S, Yoon S H Lee T S, Kim I H, Jeong J H, Cheong B, Kim D S, Cho K M and Kim W M 2006 Phys. Stat. Solids A 203 1211
[36] Wang J, Gu B, Wang H T and Ni X W 2010 Opt. Commun. 283 3525
[37] Nooraldeen A Y, Palanichant P K and Palanisamy P K 2008 I. J. N. S. 7 290
[38] Min S K, OH CH H and Lee Y P 2009 J. Korean Phys. Soc. 55 1005
[39] Mathews S J, Chaitanya Kumar S, Giribabu L and Venugopal Rao S 2007 Opt. Commun. 280 206
[1] Guiding properties of proton-implanted Nd3+-doped phosphate glass waveguides
Qi-Feng Zhu(朱其峰), Yue Wang(王玥), Jian-Ping Shen(沈建平), Hai-Tao Guo(郭海涛), Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2018, 27(5): 054218.
[2] Optical properties of phosphate glasses co-doped with Yb3+ and silver nanoparticles
M. A. Vallejo H., M. A. Martinez G., A. V. Kiryanov, J. L. Lucio M.. Chin. Phys. B, 2014, 23(12): 124214.
[3] Physical origin of observed nonlinearities in Poly (1-naphthyl methacrylate):Using a single transistor–transistor logic modulated laser beam
Qusay M. A. Hassan, Hussain A. Badran, Alaa Y. AL-Ahmad, Chassib A. Emshary. Chin. Phys. B, 2013, 22(11): 114209.
[4] Orientation-enhanced nonlinear optical properties and phase-conjugate reflective system of a novel Azobenzene doped polymer film
Xie Ru-Sheng(谢茹胜), Fan Wen-Bin(范文彬), Lu Ming(陆明), and Zhao You-Yuan(赵有源) . Chin. Phys. B, 2007, 16(9): 2725-2730.
[5] Spectroscopic properties and thermal stability of Er3+/Yb3+-codoped fluorophosphate glasses
Li Tao (李涛), Zhang Qin-Yuan (张勤远), Zhao Chun (赵纯), Feng Zhou-Ming (冯洲明), Shi Dong-Mei (石冬梅), Deng Zai-De (邓再德), Jiang Zhong-Hong (姜中宏). Chin. Phys. B, 2005, 14(6): 1250-1254.
No Suggested Reading articles found!