CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Nonlinear optical characterization of phosphate glasses based on ZnO using the Z-scan technique |
Masoumeh Shokati Mojdehia, Wan Mahmood Mat Yunusa, Khor Shing Fhanb, Zainal Abidin Taliba, N. Tamcheka |
a Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
b School of Electrical Systems Engineering, Universiti Malaysia Perlis, Campus Pauh Putra, 02600 Arau, Perlis Malaysia |
|
|
Abstract The nonlinear optical properties of a phosphate vitreous system [(ZnO)x-(MgO)30-x-(P2O5)70], where x=8, 10, 15, 18, and 20 mol% synthesized through the melt-quenching technique have been investigated by using the Z-scan technique. In the experiment, a continuous-wave laser with a wavelength of 405 nm was utilized to determine the sign and value of the nonlinear refractive (NLR) index and the absorption coefficient with closed and opened apertures of the Z-scan setup. The NLR index was found to increase with the ZnO concentration in the glass samples by an order of 10-10 cm2·W-1. The real and imaginary parts of the third-order nonlinear susceptibility were calculated by referring to the NLR index (n2) and absorption coefficient (β) of the samples. The value of the third-order nonlinear susceptibility was presented by nonlinear refractive or absorptive behavior of phosphate glasses for proper utilization in nonlinear optical devices. Based on the measurement, the positive sign of the NLR index shows a self-focusing phenomenon. The figures of merit for each sample were calculated to judge the potential of phosphate glasses for application in optical switching.
|
Received: 27 March 2013
Revised: 07 June 2013
Accepted manuscript online:
|
PACS:
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
78.20.Mg
|
(Photorefractive effects)
|
|
Fund: Project supported by the Ministry of Higher Education (Grant Nos. 1-11-08-664FR/F1 and 01-0410-861FR). |
Corresponding Authors:
Masoumeh Shokati Mojdehi
E-mail: masoumehshokati@yahoo.com
|
Cite this article:
Masoumeh Shokati Mojdehi, Wan Mahmood Mat Yunus, Khor Shing Fhan, Zainal Abidin Talib, N. Tamchek Nonlinear optical characterization of phosphate glasses based on ZnO using the Z-scan technique 2013 Chin. Phys. B 22 117802
|
[1] |
Khattak G D, Mekki A and Wenger L E 2009 J. Non-Cryst. Solids. 355 2148
|
[2] |
Sreeja R, John J, Aneesh P M and Jayaraj M K 2010 Opt. Commun. 283 2908
|
[3] |
Shahriari E and Yunus W M M 2011 Dig. J. Nanomater. Bios. 5 939
|
[4] |
Rashidian M and Dorranian D 2012 Opt Eng. 51 089001
|
[5] |
Lorance D, Aranyosive M, Buczynski R and Stepian R 2008 Appl. Phys. B 93 531
|
[6] |
Santos C C, Guedes I, Loong C K, Boatner L A, Moura L A, De Araujo M T, Jacinto C and Vermelho M V D 2009 J. Phys. D 43 1
|
[7] |
Zhou J, Teng Y, Ye S, Liu X and Qiu J 2010 Opt. Mater. 33 153
|
[8] |
Vijaya Prakash G, Jagannathan R and Narayana Rao D 2002 Mater. Lett. 57 134
|
[9] |
Ogale S B, Vispute R D, Hullavarad S, Pugel D E, Kulkarni V, Dhar S, Takeuchi I and Venkatesan T 2005 Thin Films and Heterostructures For Oxide Electronics (New York: Springer) pp. 301–330
|
[10] |
Jamshidi-Ghaleh K, Mansour N and Namdar A 2005 Laser Phys. 15 1714
|
[11] |
Liu X and Tomita Y 2012 Phys. Res. Int. 2012 9
|
[12] |
Song Y L, Xia C H, Chen Z M and Wu Y Q 2005 Acta Phys. Sin. 54 5168 (in Chinese)
|
[13] |
Tsigaridas G, Polyzos I, Persephonis P and Giannetas V 2006 Opt. Commun. 266 284
|
[14] |
Kandasamy K, Divakar Rao K, Deshpande R, Puntambekar P N, Singh B P, Shetty S J and Srivastava T S 1997 Appl. Phys. B 64 479
|
[15] |
Zhang W P, Tian J G, Liu Z B, Zhou W Y, Mei C, Song F and Zhang C P 2004 Acta Phys. Sin. 53 1820 (in Chinese)
|
[16] |
Suresh S and Arivuoli D 2012 Rev. Adv. Mater Sci. 30 243
|
[17] |
Quemard C, Smektala F, Couderc V, Barthelemy A and Lucas J 2001 J. Phys. Chem. Solids 62 1435
|
[18] |
Bing G and Wang H T J. Appl. Phys. 96 963
|
[19] |
Natarajan V, Siavanesan T and Pandi S 2010 I.N.D.J.S.T. 3 897
|
[20] |
Gopinath G, Soljacic M, Ippen E, Fulflyigin V, King W and Shurgalin M 2004 J. Appl. Phys. 96 6931
|
[21] |
Huang T, Hao Z, Gong H, Liu Z, Xiao S, Li S, Zhai Y, You S, Wang Q and Qin J 2008 Chem. Phys. Lett. 451 213
|
[22] |
Hendry E, Yang J, Lee J Y, Mi J and Ji W 2006 Appl. Phys. Lett. 88 083107
|
[23] |
Gong H M, Zhou Z K, Xiao S, Song H, Su X R, Li M and Wang Q Q 2007 Chin. Phys. Lett. 24 3443
|
[24] |
Chen S Q, Liu Z B, Zang W P, Tian J G, Zhou W Y and Zhang C P 2006 Acta Phys. Sin. 55 1211 (in Chinese)
|
[25] |
Khor S F, Talib Z A, Daud W M, Sidek H A A and Ng B H 2009 J. Non-Cryst. Solids 355 2533
|
[26] |
Al-Ahmad A Y, Shabeeb G M, Abdullah A Q and Ziadan K M 2011 Optik. 122 1885
|
[27] |
Gayathri C and Ramalingam A 2008 Optics 119 409
|
[28] |
Samineni P, Perret Z, Warren W S and Fischer M 2010 Opt. Express 18 12727
|
[29] |
Stepanov A, Ganeev R A, Ryasnyansky A I and Usmanov T 2003 Nucl. Instrum Meth B 206 624
|
[30] |
Fang G Y, Song Y L, Wang Y X, Zhang X R, Qu S L, Li C F, Song L C, Hu Q M and Liu P C 2000 Acta Phys. Sin. 49 1499 (in Chinese)
|
[31] |
Gomez S L, Cuppo F L S and Figueiredo Netos A M 2003 Braz. J. Phys. 33 813
|
[32] |
Dorranian D, Golian Y and Hojabri A 2012 J. T. A. P. 6 1
|
[33] |
Palfalvi L, Toth B, Almasi G, Fulop J and Hebling J 2009 Appl. Phys. B 97 679
|
[34] |
Wang Y H, Li H Q, Lu J D and Wang R W 2011 Chin. Phys. Lett. 28 116101
|
[35] |
Jun H S, Lee K S, Yoon S H Lee T S, Kim I H, Jeong J H, Cheong B, Kim D S, Cho K M and Kim W M 2006 Phys. Stat. Solids A 203 1211
|
[36] |
Wang J, Gu B, Wang H T and Ni X W 2010 Opt. Commun. 283 3525
|
[37] |
Nooraldeen A Y, Palanichant P K and Palanisamy P K 2008 I. J. N. S. 7 290
|
[38] |
Min S K, OH CH H and Lee Y P 2009 J. Korean Phys. Soc. 55 1005
|
[39] |
Mathews S J, Chaitanya Kumar S, Giribabu L and Venugopal Rao S 2007 Opt. Commun. 280 206
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|