Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 060701    DOI: 10.1088/1674-1056/23/6/060701
GENERAL Prev   Next  

Spatial geometric constraints histogram descriptors based on curvature mesh graph for 3D pollen particles recognition

Xie Yong-Huaa, Xu Zhao-Feia, Hans Burkhardtb
a School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China;
b Department of Computer Science, Freiburg University, Freiburg 79100, Germany
Abstract  This paper presents one novel spatial geometric constraints histogram descriptors (SGCHD) based on curvature mesh graph for automatic three-dimensional (3D) pollen particles recognition. In order to reduce high dimensionality and noise disturbance arising from the abnormal record approach under microscopy, the separated surface curvature voxels are extracted as primitive features to represent the original 3D pollen particles, which can also greatly reduce the computation time for later feature extraction process. Due to the good invariance to pollen rotation and scaling transformation, the spatial geometric constraints vectors are calculated to describe the spatial position correlations of the curvature voxels on the 3D curvature mesh graph. For exact similarity evaluation purpose, the bidirectional histogram algorithm is applied to the spatial geometric constraints vectors to obtain the statistical histogram descriptors with fixed dimensionality, which is invariant to the number and the starting position of the curvature voxels. Our experimental results compared with the traditional methods validate the argument that the presented descriptors are invariant to different pollen particles geometric transformations (such as posing change and spatial rotation), and high recognition precision and speed can be obtained simultaneously.
Keywords:  pollen recognition      curvature mesh graph      spatial geometric constraints      bidirectional histogram     
Received:  21 August 2013      Published:  15 June 2014
PACS:  07.05.Tp (Computer modeling and simulation)  
  42.30.Wb (Image reconstruction; tomography)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61375030), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20090149), and the Natural Science Foundation of Higher Education Institutions of Jiangsu Province, China (Grant No. 08KJD520019).
Corresponding Authors:  Xie Yong-Hua     E-mail:  yonghua@nuist.edu.cn

Cite this article: 

Xie Yong-Hua, Xu Zhao-Fei, Hans Burkhardt Spatial geometric constraints histogram descriptors based on curvature mesh graph for 3D pollen particles recognition 2014 Chin. Phys. B 23 060701

[1] Bush M B and Weng C Y 2007 Journal of Biogeography 34 377
[2] Xie Y H and Michael O 2010 Chin. Phys. 19 110601
[3] Zhou X L, Chen X R, Yang X D and Gou Q Q 2003 Chin. Phys. 12 1011
[4] Tian H, Cui W R, Wan T and Chen M 2008 "A Computational Approach for Recognition of Electronic Microscope Plant Pollen Images" (CISP 2008), Proceedings of the 2008 International Congress on Image and Signal Processing Haikou, Hainan, p. 259
[5] Allen G P, Hodgson R M, Marsland S R, Arnold G, Flemmer R C, Flenley J and Fountain D W 2006 "Automatic Recognition of Light-Microscope Pollen Images", Proceedings of the 21st International Conference on Image Vision and Computing, November 27-29, Great Barrier Island, New Zealand, p. 355
[6] Steven S, Eckart S, Ulrich H, Regula G, Claudio D, Barbara K, Burkhardt H, Olaf R, Wang Q, Albrecht B, Gerd S, Markus E V, Dominik G, Markus F, Wolfgang K, Wilhelm D, Hubert L, Werner M and Gernot B 2006 Automatic Pollen Recognition: Developments and Perspectives, Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 58 309
[7] Li Z, Zhang J S, Yang J and Gong Q H 2006 Chin. Phys. 15 2558
[8] Pierre B, Alian B, Monique T, Regis T, Pablo G H, Jordina B and Carman G 2002 Image Anal. Stereol. 20 527
[9] Fehr J, Ronneberger O, Kurz H and Burkhardt H 2005 "Self-Learning Segmentation and Classification of Cell-Nuclei in 3D Volumetric Data using Voxel-Wise Gray Scale Invariants", Proceedings of the 27th DAGM Symposium, August 31-September 2, 2005, Vienna, Austria, p. 377
[10] Ronneberger O, Burkhardt H and Schultz E 2002 "General-Purpose Object Recognition in 3D Volume Data Sets using Gray-Scale Invariants-Classification of Airborne Pollen-Grains Recorded with a Confocal Laser Scanning Microscope", Proceedings of the 16th International Conference on Pattern Recognition, August 11-15, 2002, Quebec, Canada, p. 290
[11] Olaf R, Wang Q and Burkhardt H 2007 Lecture Notes in Computer Science 4713 425
[12] Wang Q, Ronneberger O and Burkhardt H 2009 IEEE Transactions on Pattern Analysis and Machine Intelligence 31 1715
[13] Wong W, Shih F Y and Liu J 2007 Information Sciences 177 1878
[14] Valveny E and Marti E 2003 Pattern Recognition Letters 24 2857
[15] Yang S 2005 IEEE Transactions on Pattern Analysis and Machine Intelligence 27 278
[16] Peng S H, Kim D H, Lee S L and Chung C W 2010 Information Sciences 180 2925
[17] Qin W, Zhang Z H and Liu X H 2011 Acta Phys. Sin. 60 127303 (in Chinese)
[18] Arici T, Dikbas S and Altunbasak Y 2009 IEEE Transactions on Image Processing 18 1921
[19] Yang P F, Wu F M, Teng B T, Liu S and Jiang J Z 2010 Chin. Phys. 19 097104
[20] Ronneberger O 2007 "3D Invariants for Automated Pollen Recognition", Ph. D. Thesis, (Germany: Freiburg University)
[1] Coupling analysis of transmission lines excited by space electromagnetic fields based on time domain hybrid method using parallel technique
Zhi-Hong Ye(叶志红), Xiao-Lin Wu(吴小林), Yao-Yao Li(李尧尧). Chin. Phys. B, 2020, 29(9): 090701.
[2] An extended cellular automata model with modified floor field for evacuation
Da-Hui Qin(秦大辉), Yun-Fei Duan(段云飞), Dong Cheng(程栋), Ming-Zhu Su(苏铭著), Yong-Bo Shao(邵永波). Chin. Phys. B, 2020, 29(9): 098901.
[3] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[4] Game theory model of exit selection in pedestrian evacuation considering visual range and choice firmness
Wei-Li Wang(王维莉), Fang-Fang Wan(万芳芳), Siu-Ming Lo(卢兆明). Chin. Phys. B, 2020, 29(8): 084502.
[5] Simulation study on cooperation behaviors and crowd dynamics in pedestrian evacuation
Ya-Ping Ma(马亚萍), Hui Zhang(张辉). Chin. Phys. B, 2020, 29(3): 038901.
[6] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[7] Parameter identification and state-of-charge estimation approach for enhanced lithium-ion battery equivalent circuit model considering influence of ambient temperatures
Hui Pang(庞辉), Lian-Jing Mou(牟联晶), Long Guo(郭龙). Chin. Phys. B, 2019, 28(10): 108201.
[8] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
[9] Three-dimensional thermal illusion devices with arbitrary shape
Xingwei Zhang(张兴伟), Xiao He(何晓), Linzhi Wu(吴林志). Chin. Phys. B, 2019, 28(6): 064403.
[10] Evacuation simulation considering action of guard in artificial attack
Chang-Kun Chen(陈长坤), Yun-He Tong(童蕴贺). Chin. Phys. B, 2019, 28(1): 010503.
[11] Effects of the planarity and heterogeneity of networks on evolutionary two-player games
Xu-Sheng Liu(刘旭升), Zhi-Xi Wu(吴枝喜), Jian-Yue Guan(关剑月). Chin. Phys. B, 2018, 27(12): 120203.
[12] Cellular automaton modeling of pedestrian movement behavior on an escalator
Fu-Rong Yue(岳芙蓉), Juan Chen(陈娟), Jian Ma(马剑), Wei-Guo Song(宋卫国), Siu-Ming Lo(卢兆明). Chin. Phys. B, 2018, 27(12): 124501.
[13] Effect of different bending shapes on thermal properties of flexible light-emitting diode filament
Liping Wang(王立平), Wenbo Li(李文博), Yichao Xu(徐一超), Bobo Yang(杨波波), Mingming Shi(石明明), Jun Zou(邹军), Yang Li(李杨), Xinglu Qian(钱幸璐), Fei Zheng(郑飞), Lei Yang(杨磊). Chin. Phys. B, 2018, 27(11): 110701.
[14] Evacuation flow of pedestrians considering compassion effect
Yu-Zhang Chen(陈煜章), Ming Li(李明), Rui Jiang(姜锐), Mao-Bin Hu(胡茂彬). Chin. Phys. B, 2018, 27(8): 088901.
[15] A slope-based decoupling algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system
Tao Cheng(程涛), Wenjin Liu(刘文劲), Boqing Pang(庞博清), Ping Yang(杨平), Bing Xu(许冰). Chin. Phys. B, 2018, 27(7): 070704.
No Suggested Reading articles found!