Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 058902    DOI: 10.1088/1674-1056/23/5/058902

Biham-Middleton-Levine model in consideration of cooperative willingness

Pan Weia b, Xue Yua, Zhao Ruia, Lu Wei-Zhenb
a College of Physical Science and Technology, Guangxi University, Nanning 530004, China;
b Department of Civil & Architectural Engineering, City University of Hong Kong, Hong Kong HKSAR, China
Abstract  In this paper, the Biham-Middleton-Levine (BML) model with consideration of cooperative willingness has been proposed to study the traffic flow in urban networks. An evolutionary game with a cooperative willingness profile is introduced to deal with conflicts between disturbing neighbors. Simulation results suggest that imitating cooperative willingness can ease the effect of premature seizure on traffic flow due to the introduction of evolutionary games. Phase diagrams with a strategy profile and cooperative willingness profile have been investigated in detail. Our findings also prove that by imitating the more successful, cooperative willingness instead of simply the more successful strategies, the evolution of cooperation is significantly promoted, hence improving the order of cooperation and relieving the pressure of traffic networks.
Keywords:  traffic flow      phase transition      cooperative willingness      evolutionary game  
Received:  11 September 2013      Revised:  15 November 2013      Accepted manuscript online: 
PACS:  89.40.-a (Transportation)  
  05.50.+q (Lattice theory and statistics)  
  64.70.-p (Specific phase transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11262003), the Hong Kong Research Grants Council (RGC)-General Research Fund (GRF) Grant, China (Grant No. CityU 118212), the Strategic Research Grant, City University of Hong Kong, China (Grant No. CityU-SRG 7002718), and the Graduate Student Innovative Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. YCSZ2012013).
Corresponding Authors:  Xue Yu, Lu Wei-Zhen     E-mail:;
About author:  89.40.-a; 05.50.+q; 64.70.-p

Cite this article: 

Pan Wei, Xue Yu, Zhao Rui, Lu Wei-Zhen Biham-Middleton-Levine model in consideration of cooperative willingness 2014 Chin. Phys. B 23 058902

[1] Biham O, Middleton A A and Levine D 1992 Phys. Rev. A 46 R6124
[2] Nagel K and Schreckenberg M 1992 J. Phys. I France 2 2221
[3] Bando M, Hasebe K, Nakayama A, Shibata A and Sugiyama Y 1995 Phys. Rev. E 51 1035
[4] Nagel K 1996 Phys. Rev. E 53 4655
[5] Helbing D and Tilch B 1998 Phys. Rev. E 58 133
[6] Knospe W, Santen L, Schadschneider A and Schreckenberg M 2000 J. Phys. A: Math. Gen. 33 L477
[7] Kerner B S and Klenov S L 2002 J. Phys. A: Math. Gen. 35 L31
[8] Nagatani T 1993 Phys. Rev. E 48 3290
[9] Chung K H, Hui P M and Gu G Q 1995 Phys. Rev. E 51 772
[10] Chowdhury D and Schadschneider A 1999 Phys. Rev. E 55 R1311
[11] Brockfeld E, Barlovic R, Schadschneider A and Schreckenberg M 2001 Phys. Rev. E 64 056132
[12] Benyoussef A, Chakib H and Ez-Zahraouy H 2003 Phys. Rev. E 68 026129
[13] D'Souza R M 2005 Phys. Rev. E 71 066112
[14] Huang D W and Huang W N 2006 Physica A 370 747
[15] Ge H X, Dai S Q and Dong L Y 2008 Chin. Phys. B 17 23
[16] Peng G H and Sun D H 2009 Chin. Phys. B 18 5420
[17] Tang T Q, Huang H J and Shang H Y 2010 Chin. Phys. B 19 050517
[18] Xiong T, Zhang P, Wong S C, Shu C W and Zhang M P 2011 Chin. Phys. Lett. 28 108901
[19] Szab G and Fáth G 2007 Phys. Rep. 446 97
[20] Perc M 2007 New J. Phys. 9 3
[21] Sun X Y, Jiang R, Hao Q Y and Wang B H 2010 Europhys. Lett. 92 18003
[22] Tanimoto J, Hagishima A and Tanaka Y 2010 Physica A 389 5611
[23] Hao Q Y, Jiang R, Hu M B, Jia B and Wu Q S 2011 Phys. Rev. E 84 036107
[24] Xie J J and Xue Y 2012 Acta Phys. Sin. 61 194502 (in Chinese)
[25] Szolnoki A, Xie N G, Wang C and Perc M 2011 Europhys. Lett. 96 38002
[26] Szolnoki A, Xie N G, Ye Y and Perc M 2013 Phys. Rev. E 87 042805
[27] Hofbauer J and Sigmund K 1998 Evolutionary Games and Population Dynamics (Cambridge: Cambridge University Press) p. 93
[28] Jones G R and George J M 1998 Acad. Manage. Rev. 23 531
[29] Sun X Y, Jiang R and Wang B H 2010 Chin. Phys. Lett. 27 058902
[30] Zhang J W and Zou Y 2010 Physics 39 184
[31] Li C Y, Tang T Q, Huang H J and Shang H Y 2011 Chin. Phys. Lett. 28 038902
[1] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[2] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[3] Phase transition of shocked water up to 6 GPa: Transmittance investigation
Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云). Chin. Phys. B, 2021, 30(5): 050701.
[4] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[5] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[6] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[7] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[8] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[9] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[10] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[11] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[12] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[13] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[14] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[15] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
No Suggested Reading articles found!