Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 044402    DOI: 10.1088/1674-1056/23/4/044402
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Hydromagnetic flow of a Cu–water nanofluid past a moving wedge with viscous dissipation

A. M. Salema b, Galal Ismailc, Rania Fathyc
a Department of Mathematics, Faculty of Science and Arts, Qassim University, Al-Muznib, Saudi Arabia;
b Department of Basic Science, Faculty of Computers and Informatics, Suez Canal University, Egypt;
c Department of Mathematics, Faculty of Science, Zagazig University, Egypt
Abstract  A numerical study is performed to investigate the flow and heat transfer at the surface of a permeable wedge immersed in a copper (Cu)-water-based nanofluid in the presence of magnetic field and viscous dissipation using a nanofluid model proposed by Tiwari and Das (Tiwari I K and Das M K 2007 Int. J. Heat Mass Transfer 50 2002). A similarity solution for the transformed governing equation is obtained, and those equations are solved by employing a numerical shooting technique with a fourth-order Runge-Kutta integration scheme. A comparison with previously published work is carried out and shows that they are in good agreement with each other. The effects of velocity ratio parameter <λ, solid volume fraction ø, magnetic field M, viscous dissipation Ec, and suction parameter Fw on the fluid flow and heat transfer characteristics are discussed. The unique and dual solutions for self-similar equations of the flow and heat transfer are analyzed numerically. Moreover, the range of the velocity ratio parameter for which the solution exists increases in the presence of magnetic field and suction parameter.
Keywords:  nanofluid      dual solution      magnetic field      viscous dissipation  
Received:  03 June 2013      Revised:  18 July 2013      Accepted manuscript online: 
PACS:  44.20.+b (Boundary layer heat flow)  
  44.30.+v (Heat flow in porous media)  
  47.65.-d (Magnetohydrodynamics and electrohydrodynamics)  
  47.61.-k (Micro- and nano- scale flow phenomena)  
Corresponding Authors:  A. M. Salem     E-mail:  azizsalem32@hotmail.com
About author:  44.20.+b; 44.30.+v; 47.65.-d; 47.61.-k

Cite this article: 

A. M. Salem, Galal Ismail, Rania Fathy Hydromagnetic flow of a Cu–water nanofluid past a moving wedge with viscous dissipation 2014 Chin. Phys. B 23 044402

[1] Choi S U S 1995 ASME International Mechanica Engineering Congress and Exposition, San Francsco, USA, ASME, FED 231/MD 99
[2] Wong K F V and Leone O D 2010 Applications of Nanofluids: Current and Future, Adv. Mech. Eng. 2010: 519659
[3] Khanafer K, Vafai K and Lightstone M 2003 J. Heat Mass Transfer 46 3639
[4] Maiga S E B, Palm S J, Nguyen C T, Roy G and Galanis N 2005 Int. J. Heat Fluid Flow 26 530
[5] Jou R Y and Tzeng S C 2006 Int. Commun. Heat Transfer 33 727
[6] Tiwari I K and Das M K 2007 Int. J. Heat Mass Transfer 50 2002
[7] Hang K S, Lee Ji H and Jang S P 2007 Int. J. Heat Mass Transfer 50 4003
[8] Oztop H F and Abu-Nada E 2008 Int. J. Heat Fluid Flow 29 1326
[9] Muthtamilselvan M, Kandaswamy P and Lee J 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1501
[10] Buongiorno J 2006 ASME J. Heat Transfer 128 240
[11] Kuznetsov A V and Nield D A 2010 Int. J. Therm. Sci. 49 243
[12] Abu-Nada E and Oztop H F 2009 Int. J. Heat Fluid Flow 30 669
[13] Riley N and Weidman P D 1989 SIAM J. Appl. Math. 49 1350
[14] Yacob N A, Ishak A I and Pop I 2011 Int. J. Thermal Sci. 50 133
[15] Falkner V M and Skan S W 1931 Phil. Mag. 12 865
[16] Devi A and Kandasamy R 2002 Int. Commun. Heat Mass Transfer 29 707
[17] Kandasamy R M, Azme B and Rozaini R 2012 Int. J. Thermal Sci. 65 196 Kandasamy R and Anjali Dev S P 2002 J. Energy, Heat Mass Transfer 24 175
[18] Kumari M 1998 Int. J. Engin. Sci. 36 299
[19] Bachok N, Ishak A and Pop I 2010 Int. J. Thermal Sci. 49 1663
[20] Xiaohong S W, Zheng L, Zhang X and Zhang J 2012 Chem. Engin. Sci. 78 1
[21] Hamad M A A, Pop I and Ismail A I 2011 Nonlinear Analysis: Real World Applications 12 1338
[22] Gebhart B 1962 J. Fluid Mech. 14 225
[23] Pantokratoras A 2004 Appl. Math. Model. 6 553
[24] Zueco J and Beg O A 2009 Math. Comput. Model. 50 439
[25] Muhaimin I, Kandasamy R, Hashim I and Ruhaila 2008 Int. J. Appl. Math. Statistics 13 9
[26] Chandrasekar M and Baskaran S 2007 Theor. Appl. Mech. 34 197
[27] Makinde O D 2012 Appl. Math. Mech. 33 1442
[28] Na T Y 1974 Computational Method in Engineering Boundary Value Problems (New York: Academic Press)
[29] Wang C Y 2008 Int. J. Nonlinear Mech. 43 377
[30] Bachok N, Ishak A and Pop I 2010 Phys. Lett. A 347 4075
[31] Krishnendu B 2011 Int. Commun. Heat Mass Transfer 38 917
[1] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[2] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[3] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[4] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[5] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[6] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[7] Influence of the anisotropy on the magneto-acoustic response of magnetic surface acoustic wave resonators
Yawei Lu(鲁亚巍), Wenbin Hu(胡文彬), Wan Liu(刘婉), Feiming Bai(白飞明). Chin. Phys. B, 2020, 29(6): 067504.
[8] Electrical properties of Ca3-xSmxCo4O9+δ ceramics preparedunder magnetic field
Xiu-Rong Qu(曲秀荣), Yan-Yan Xu(徐岩岩), Shu-Chen Lü(吕树臣), Jian-Min Hu(胡建民). Chin. Phys. B, 2020, 29(4): 046103.
[9] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[10] Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(1): 010307.
[11] Novel transit-time oscillator (TTO) combining advantages of radial-line and axial TTO
Wei-Li Xu(徐伟力), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Li-Li Song(宋莉莉), Bing-Fang Deng(邓秉方), Ouzhixiong Dai(戴欧志雄), Xing-Jun Ge(葛行军). Chin. Phys. B, 2019, 28(8): 085201.
[12] Axial magnetic field effect in numerical analysis of high power Cherenkov free electron laser
F Bazouband, B Maraghechi. Chin. Phys. B, 2019, 28(6): 064101.
[13] Orientation and alignment during materials processing under high magnetic fields
Zhong-Ming Ren(任忠鸣), Jiang Wang(王江), Rui-Xin Zhao(赵睿鑫). Chin. Phys. B, 2019, 28(4): 048301.
[14] Magnetochemistry and chemical synthesis
Lin Hu(胡林), Guoliang Xia(夏国良), Qianwang Chen(陈乾旺). Chin. Phys. B, 2019, 28(3): 037102.
[15] Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV- center
Lin Zhao(赵琳), Donghui Yue(岳冬辉), Cailong Liu(刘才龙), Min Wang(王敏), Yonghao Han(韩永昊), Chunxiao Gao(高春晓). Chin. Phys. B, 2019, 28(3): 030702.
No Suggested Reading articles found!