Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050203    DOI: 10.1088/1674-1056/22/5/050203
GENERAL Prev   Next  

Painlevé integrability of generalized fifth-order KdV equation with variable coefficients: Exact solutions and their interactions

Xu Gui-Qiong
Department of Information Management, College of Management, Shanghai University, Shanghai 200444, China
Abstract  By means of singularity structure analysis, the integrability of a generalized fifth-order KdV equation is investigated. It is proven that this equation passes the Painlevé test for integrability only for three distinct cases. Moreover, the multi-soliton solutions are presented for this equation under three sets of integrable conditions. Finally, by selecting appropriate parameters, we analyze the evolution of two solitons, which is especially interesting as it may describe the overtaking and the head-on collisions of solitary waves of different shapes and different types.
Keywords:  generalized fifth-order KdV equation      Painlevé      integrability      soliton solution      symbolic computation  
Received:  21 November 2012      Revised:  05 January 2013      Published:  01 April 2013
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
Fund: Projects supported by the National Natural Science Foundation of China (Grant Nos. 11201290 and 71103118).
Corresponding Authors:  Xu Gui-Qiong     E-mail:  xugq@staff.shu.edu.cn

Cite this article: 

Xu Gui-Qiong Painlevé integrability of generalized fifth-order KdV equation with variable coefficients: Exact solutions and their interactions 2013 Chin. Phys. B 22 050203

[1] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press)
[2] Wadati M, Sanuki H and Konno K 1975 Prog. Theor. Phys. 53 419
[3] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522
[4] Hirota R 1971 Phys. Rev. Lett. 27 1192
[5] Zamir M 2000 The Physics of Pulsatile Flow (New York: Springer-Verlag)
[6] Yan Z Y and Hang C 2009 Phys. Rev. A 80 063626
[7] Yang Z, Ma S H and Fang J P 2011 Chin. Phys. B 20 040301
[8] Yan Z Y and Jiang D M 2012 J. Math. Analy. Appl. 395 542
[9] Dai H H and Huo Y 2002 Wave Motions. 35 55
[10] Zhang Y, Li J B and Lv Y N 2008 Annals of Physics 323 3059
[11] Zhang Y, Wei W W, Cheng T F and Song Y 2011 Chin. Phys. B 20 110204
[12] Yang Y Q and Chen Y 2011 Chin. Phys. B 20 1674
[13] Fan E G 2011 Phys. Lett. A 375 493
[14] Serkin V N and Hasegawa A 2000 Phys. Rev. Lett. 85 4502
[15] Xu G Q 2009 Comput. Phys. Commun. 180 1137
[16] Zhang H P, Li B and Chen Y 2010 Chin. Phys. B 19 060302
[17] Wang H and Li B 2011 Chin. Phys. B 20 040203
[18] Zheng C L and Li Y 2012 Chin. Phys. B 21 070305
[19] Zhao D, Zhang Y J, Lou W W and Luo H G 2011 J. Math. Phys. 52 043502
[20] Yu X, Gao Y T, Sun Z Y and Liu Y 2010 Phys. Scr. 81 045402
[21] Yu X, Gao Y T, Sun Z Y and Liu Y 2011 Commun. Theor. Phys. 55 629
[22] Chen B and Xie Y C 2005 Chao. Soliton. Fract. 23 243
[23] Zhang Y X, Zhang H Q, Li J, Xu T, Zhang C Y and Tian B 2008 Commun. Theor. Phys. 49 833
[24] Wazwaz A M 2010 Phys. Scr. 82 035009
[25] Hereman W, Göktas Ü, Colagrosso M D and Miller A 1998 Comput. Phys. Commun. 115 428
[26] Lou S Y 1998 Phys. Rev. Lett. 80 5027
[27] Sakovich S Yu and Tsuchida T 2000 J. Phys. A: Math. Gen. 33 7217
[28] Baldwin D and Hereman W 2006 J. Nonlin. Math. Phys. 13 90
[29] Lou S Y, Tong B, Hu H C and Tang X Y 2006 J. Phys. A: Math. Gen. 39 513
[30] Xu G Q 2006 Phys. Rev. E 74 027602
[31] Xu G Q 2008 Comput. Phys. Commun. 178 505
[32] Ding C Y, Zhao D and Luo H G 2012 J. Phys. A: Math. Theor. 45 115203
[33] Nakamura A 1979 J. Phys. Soc. Jpn. 47 1701
[34] Hu X B and Clarkson P A 1995 J. Phys. A: Math. Gen. 28 5009
[35] Gilson C R, Hu X B, Ma W X and Tam H W 2003 Phys. D 175 177
[36] Zhang D J and Chen D Y 2004 J. Phys. A: Math. Gen. 37 851
[37] Yao Y Q, Chen D Y and Zhang D J 2008 Phys. Lett. A 372 2017
[38] Chen S T, Zhu X M, Li Q and Chen D Y 2011 Chin. Phys. Lett. 28 060202
[39] Wu J P, Geng X G and Zhang X L 2009 Chin. Phys. Lett. 26 020202
[40] Fan E G and Hon Y C 2008 Phys. Rev. E 78 036607
[41] Fan E G and Chow K K 2011 J. Math. Phys. 52 023504
[42] Xu G Q and Li Z B 2005 Appl. Math. Comput. 169 1364
[1] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[2] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[3] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[4] Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations
Yu-Hang Yin(尹宇航), Si-Jia Chen(陈思佳), and Xing Lü(吕兴). Chin. Phys. B, 2020, 29(12): 120502.
[5] Painlevé integrability of the supersymmetric Ito equation
Feng-Jie Cen(岑锋杰), Yan-Dan Zhao(赵燕丹), Shuang-Yun Fang(房霜韵), Huan Meng(孟欢), Jun Yu(俞军). Chin. Phys. B, 2019, 28(9): 090201.
[6] Lump-type solutions of a generalized Kadomtsev-Petviashvili equation in (3+1)-dimensions
Xue-Ping Cheng(程雪苹), Wen-Xiu Ma(马文秀), Yun-Qing Yang(杨云青). Chin. Phys. B, 2019, 28(10): 100203.
[7] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
[8] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[9] N-soliton solutions for the nonlocal two-wave interaction system via the Riemann-Hilbert method
Si-Qi Xu(徐思齐), Xian-Guo Geng(耿献国). Chin. Phys. B, 2018, 27(12): 120202.
[10] Residual symmetry, interaction solutions, and conservation laws of the (2+1)-dimensional dispersive long-wave system
Ya-rong Xia(夏亚荣), Xiang-peng Xin(辛祥鹏), Shun-Li Zhang(张顺利). Chin. Phys. B, 2017, 26(3): 030202.
[11] Soliton and rogue wave solutions of two-component nonlinear Schrödinger equation coupled to the Boussinesq equation
Cai-Qin Song(宋彩芹), Dong-Mei Xiao(肖冬梅), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2017, 26(10): 100204.
[12] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[13] Nonlocal symmetries, consistent Riccati expansion integrability, and their applications of the (2+1)-dimensional Broer-Kaup-Kupershmidt system
Hu Xiao-Rui, Chen Yong. Chin. Phys. B, 2015, 24(9): 090203.
[14] Nonautonomous dark soliton solutions in two-component Bose-Einstein condensates with a linear time-dependent potential
Li Qiu-Yan, Wang Shuang-Jin, Li Zai-Dong. Chin. Phys. B, 2014, 23(6): 060310.
[15] Periodic solitons in dispersion decreasingfibers with a cosine profile
Jia Ren-Xu, Yan Hong-Li, Liu Wen-Jun, Lei Ming. Chin. Phys. B, 2014, 23(10): 100502.
No Suggested Reading articles found!