Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 045204    DOI: 10.1088/1674-1056/22/4/045204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

The effects of process conditions on the plasma characteristic in radio-frequency capacitively coupled SiH4/NH3/N2 plasmas: Two-dimensional simulations

Liu Xiang-Meia, Song Yuan-Hongb, Jiang Weia, Yi Lina
a School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
b School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Abstract  A two-dimensional (2D) fluid model is presented to study the behavior of silicon plasma mixed with SiH4, N2, and NH3 in radio-frequency capacitively coupled plasma (CCP) reactor. The plasma-wall interaction (including the deposition) is modeled by using surface reaction coefficients. In the present paper we try to identify, by numerical simulations, the effect of variations of the process parameters on the plasma properties. It is found from our simulations that by increasing the gas pressure and the discharge gap, the electron density profile shape changes continuously from an edge-high to a center-high, thus the thin films become more uniform. Moreover, as the N2/NH3 ratio increases from 6/13 to 10/9, the hydrogen content can be significantly decreased, without decreasing significantly the electron density.
Keywords:  capacitively coupled plasma      process conditions effects      SiH4/NH3/N2 discharges     
Received:  16 July 2012      Published:  01 March 2013
PACS:  52.65.-y (Plasma simulation)  
  52.25.-b (Plasma properties)  
  52.80.Pi (High-frequency and RF discharges)  
Fund: Project supported by China Postdoctoral Science Foundation (Grant No. 2012M511603), the National Natural Science Foundation of China (Grant Nos. 11105057 and 10775025), the Natural Science Foundation of Hubei Province of China (Grant No. 2007ABA035), and the Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0073).
Corresponding Authors:  Yi Lin     E-mail:  yilin@mail.hust.edu.cn

Cite this article: 

Liu Xiang-Mei, Song Yuan-Hong, Jiang Wei, Yi Lin The effects of process conditions on the plasma characteristic in radio-frequency capacitively coupled SiH4/NH3/N2 plasmas: Two-dimensional simulations 2013 Chin. Phys. B 22 045204

[1] Sleeck E, Schaekers M, Shi X, Kunnen E, Degroote B, Jurczak M, de Potter, de ten Broeck M and Augendre E 2005 Microelectron. Reliab. 45 865
[2] Liu X M, Song Y H and Wang Y N 2011 Chin. Phys. B 20 065205
[3] Olson J M 2002 Mater. Sci. Semicond. Process. 5 51
[4] Kubacki R M, Ionic Syst and Salinas C A 1995 IEEE. Trans. Compon. Packag. Manuf. Technol. 18 471
[5] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. (New York: Wiley-Interscience)
[6] Sze S M 1985 Semiconductor Devices: Physics and Technology (New York: Wiley)
[7] Smith D L, Alimonda A S, Chen C C, Ready S E and Wacker B 1990 J. Electrochem. Soc. 137 614
[8] Ray S K, Das S, Maiti C K, Lahiri S K and Chakraborti N B 1994 J. Appl. Phys. 75 8145
[9] Kushner M J 1992 J. Appl. Phys. 71 4173
[10] Ohta H, Nagashima A, Hori M and Goto T 2001 J. Appl. Phys. 89 5083
[11] Nowling G R, Babayan S E, Jankovic V and Hicks R F 2002 Plasma Sources Sci. Technol. 11 97
[12] Bavafa M, Ilati H and Rashidian B 2008 Semicond. Sci. Technol. 23 095023
[13] De Bleecker K, Bogaerts A, Gijbels R and Goedheer W 2004 Phys. Rev. E 69 056409
[14] Nienhuis G J, Goedheer W J, Hamers E A G, van Sark W G J H M and Bezemer J 1997 J. Appl. Phys. 82 2060
[15] Fridman A A, Boufendi L, Hbid T, Potapkin B V and Bouchoule A 1996 J. Appl. Phys. 79 1303
[16] Dollet A, Couderc J P and Despax B 1995 Plasma Sources Sci. Technol. 4 94
[17] De Bleecker K, Herrebout D, Bogaerts A, Gijbels R and Descamps P 2003 J. Phys. D: Appl. Phys. 36 1826
[18] Hayashi M 1987 Swarm Studies and Inelastic Electron-Molecule Collisions, eds. Pitchford L C, McKay V B, Chutjian A and Trajmar S (New York: Springer) pp. 167-190
[19] Perrin J, Leroy O and Bordage M C 1996 Plasma Phys. 36 3
[20] McDaniel E W and Mason E A 1973 The Mobility and Diffusion of Ions in Gases (New York: Wiley)
[21] Liu X M, Song Y H, Xu X and Wang Y N 2011 Phys. Plasmas 18 083508
[22] Smith D L, Alimonda A S, Chen C C, Ready S E and Wacker B 1990 J. Electrochem. Soc. 137 614
[23] Volynets V, Shin H, Kang D and Sung D 2010 J. Phys. D: Appl. Phys. 43 085203
[1] Measurements of argon metastable density using the tunable diode laser absorption spectroscopy in Ar and Ar/O2
Dao-Man Han(韩道满), Yong-Xin Liu(刘永新), Fei Gao(高飞), Wen-Yao Liu(刘文耀), Jun Xu(徐军), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(6): 065202.
[2] Effect of driving frequency on electron heating in capacitively coupled RF argon glow discharges at low pressure
Tagra Samir, Yue Liu(刘悦), Lu-Lu Zhao(赵璐璐), Yan-Wen Zhou(周艳文). Chin. Phys. B, 2017, 26(11): 115201.
[3] One-dimensional hybrid simulation of the electrical asymmetry effectcaused by the fourth-order harmonic in dual-frequencycapacitively coupled plasma
Shuai Wang(王帅), Hai-Feng Long(龙海凤), Zhen-Hua Bi(毕振华), Wei Jiang(姜巍), Xiang Xu(徐翔), You-Nian Wang(王友年). Chin. Phys. B, 2016, 25(11): 115202.
[4] Characteristics of dual-frequency capacitively coupled SF6/O2 plasma and plasma texturing of multi-crystalline silicon
Xu Dong-Sheng, Zou Shuai, Xin Yu, Su Xiao-Dong, Wang Xu-Sheng. Chin. Phys. B, 2014, 23(6): 065201.
[5] Driving frequency effects on the mode transition in capacitively coupled argon discharges
Liu Xiang-Mei, Song Yuan-Hong, Wang You-Nian. Chin. Phys. B, 2011, 20(6): 065205.
[6] Diagnosis of a low pressure capacitively coupled argon plasma by using a simple collisional-radiative model
Yu Yi-Qing, Xin Yu, Ning Zhao-Yuan. Chin. Phys. B, 2011, 20(1): 015207.
No Suggested Reading articles found!