Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 045202    DOI: 10.1088/1674-1056/22/4/045202

Enhanced optical absorption by Ag nanoparticles in thin film Si solar cell

Chen Feng-Xiang,Wang Li-Sheng, Xu Wen-Ying
Department of Physics Science and Technology, Wuhan University of Technology, Wuhan 430070, China
Abstract  Thin film solar cells have potentials to significantly reduce the cost of photovoltaics. Light trapping is crucial to such a thin film silicon solar cell because of a low absorption coefficient due to its indirect band gap. In this paper, we investigate the suitability of surface plasmon resonance Ag nanoparticles for enhancing optical absorption in the thin film solar cell. For evaluating the transmittance capability of Ag nanoparticles and the conventional antireflection film, an enhanced transmittance factor is introduced. We find that under the solar spectrum AM1.5, the transmittance of Ag nanoparticles with radius over 160 nm is equivalent to that of conventional textured antireflection film, and its effect is better than that of the planar antireflection film. The influence of the surrounding medium is also discussed.
Keywords:  transmittance      surface plasmon resonance      Ag nanoparticles      thin film solar cells  
Received:  18 July 2012      Revised:  11 October 2012      Published:  01 March 2013
PACS:  52.25.Tx (Emission, absorption, and scattering of particles)  
  88.40.jj (Silicon solar cells)  
  88.40.fc (Modeling and analysis)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities (Grant Nos. 2011-Ia-002 and 2012-Ia-031).
Corresponding Authors:  Chen Feng-Xiang     E-mail:

Cite this article: 

Chen Feng-Xiang,Wang Li-Sheng, Xu Wen-Ying Enhanced optical absorption by Ag nanoparticles in thin film Si solar cell 2013 Chin. Phys. B 22 045202

[1] Hu L, Chen X Y and Chen G 2008 J. Comput. Theor. Nanos 5 2096
[2] Losurdo M, Giangregorio M M, Bianco G V, Sacchetti A, Capezzuto P and Bruno G 2009 Sol. Energy Mater. Sol. Cells 93 1749
[3] Wu Y C and Gu Z T 2008 Acta Phys. Sin. 57 2295 (in Chinese)
[4] Chen L L, Gu Y, Wang L J and Gong Q H 2007 Chin. Phys. 16 249
[5] Wang J F, Li H J, Zhou Z Y, Li X Y, Liu J and Yang H Y 2010 Chin. Phys. B 19 117310
[6] Zhong R B, Liu W H, Zhou J and Liu S G 2012 Chin. Phys. B 21 117303
[7] Zhao H J 2012 Chin. Phys. B 21 087104
[8] Huang Q, Zhang X D, Wang S, Cao L R, Sun J, Geng W D, Xiong S Z and Zhao Y 2009 Acta Phys. Sin. 58 2731 (in Chinese)
[9] Huang Q, Zhang X D, Zhang H, Xiong S Z, Geng W D, Geng X H and Zhao Y 2010 Chin. Phys. B 19 047304
[10] Zhou B, Li D S, Xiang L L and Yang D R 2010 Chin. Phys. Lett. 27 037303
[11] Bai J M and Wang J P 2005 Appl. Phys. Lett. 87 152502
[12] Flores J C, Torres V, Popa M, Crespo D and Calderon J M 2008 J. Non-cryst. Solids 354 5435
[13] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: JohnWiley & Sons) pp. 99-107
[14] Li Q, Wang L Z, Lu G Q, Huang Y and Zhu X F 2011 Acta Opt. Sin. 31 0726001
[15] Johnson P B and Christy R W 1972 Phys. Rev. B. 6 4370
[16] Han T, Meng F Y, Zhang S, Wang J Q and Chen X M 2011 Acta Phys. Sin. 60 027303 (in Chinese)
[1] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[2] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[3] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
[4] Fiber cladding SPR bending sensor characterized by two parameters
Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yong Wei(魏勇), Yudong Su(苏于东), Ping Wu(吴萍), Lingling Li(李玲玲), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2020, 29(12): 120701.
[5] Sensitivity enhancement of WS2-coated SPR-based optical fiber biosensor for detecting glucose concentration
Yun Cai(蔡云), Wei Li(李卫), Ye Feng(冯烨), Jian-Sheng Zhao(赵建胜), Gang Bai(白刚), Jie Xu(许杰), Jin-Ze Li(李金泽). Chin. Phys. B, 2020, 29(11): 110701.
[6] Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber
Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094209.
[7] Laser scattering, transmittance and low thermal expansion behaviors in Y2-x(ZnLi)xMo3O12 by forming regular grains
Xian-Sheng Liu(刘献省), Yong-Guang Cheng(程永光), Bao-He Yuan(袁保合), Er-Jun Liang(梁二军), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2019, 28(9): 096501.
[8] Influence of annealing treatment on the luminescent properties of Ta:β-Ga2O3 single crystal
Xiaowei Yu(余小威), Huiayuan Cui(崔慧源), Maodong Zhu(朱茂东), Zhilin Xia(夏志林), Qinglin Sai(赛青林). Chin. Phys. B, 2019, 28(7): 077801.
[9] Enhancement and control of the Goos-Hänchen shift bynonlinear surface plasmon resonance in graphene
Qi You(游琪), Leyong Jiang(蒋乐勇), Xiaoyu Dai(戴小玉), Yuanjiang Xiang(项元江). Chin. Phys. B, 2018, 27(9): 094211.
[10] Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing
Ang Li(李昂), Jin-Lei Wu(吴金磊), Xue-Song Xu(许雪松), Yang Liu(刘洋), Ya-Nan Bao(包亚男), Bin Dong(董斌). Chin. Phys. B, 2018, 27(9): 097301.
[11] A transparent electromagnetic-shielding film based on one-dimensional metal-dielectric periodic structures
Ya-li Zhao(赵亚丽), Fu-hua Ma(马富花), Xu-feng Li(李旭峰), Jiang-jiang Ma(马江将), Kun Jia(贾琨), Xue-hong Wei(魏学红). Chin. Phys. B, 2018, 27(2): 027302.
[12] Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering
Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117301.
[13] Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications
Wen Chen(陈文), Huatian Hu(胡华天), Wei Jiang(姜巍), Yuhao Xu(徐宇浩), Shunping Zhang(张顺平), Hongxing Xu(徐红星). Chin. Phys. B, 2018, 27(10): 107403.
[14] Optical interaction between one-dimensional fiber photonic crystal microcavity and gold nanorod
Yang Yu(于洋), Ting-Hui Xiao(肖廷辉), Zhi-Yuan Li(李志远). Chin. Phys. B, 2018, 27(1): 017301.
[15] Theoretical study on the kesterite solar cells based on Cu2ZnSn(S,Se)4 and related photovoltaic semiconductors
Dingrong Liu(刘定荣), Dan Han(韩丹), Menglin Huang(黄梦麟), Xian Zhang(张弦), Tao Zhang(张涛), Chenmin Dai(戴称民), Shiyou Chen(陈时友). Chin. Phys. B, 2018, 27(1): 018806.
No Suggested Reading articles found!