Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 010506    DOI: 10.1088/1674-1056/22/1/010506
GENERAL Prev   Next  

Folded localized excitations in the (2+1)-dimensional modified dispersive water-wave system

Lei Yan, Ma Song-Hua, Fang Jian-Ping
College of Science, Lishui University, Lishui 323000, China
Abstract  By using a mapping approach and a linear variable separation approach, a new family of solitary wave solutions with arbitrary functions for the (2+1)-dimensional modified dispersive water-wave system (MDWW) is derived. Based on the derived solutions and using some multi-valued functions, we obtain some novel folded localized excitations of the system.
Keywords:  mapping approach      modified dispersive water-wave system      solitary wave solution      folded localized excitation     
Received:  13 June 2012      Published:  01 December 2012
PACS:  05.45.Yv (Solitons)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y6100257 and Y6110140).
Corresponding Authors:  Ma Song-Hua     E-mail:  msh6209@yahoo.com.cn

Cite this article: 

Lei Yan, Ma Song-Hua, Fang Jian-Ping Folded localized excitations in the (2+1)-dimensional modified dispersive water-wave system 2013 Chin. Phys. B 22 010506

[1] Lou S Y 1996 Commun. Theor. Phys. 26 487
[2] Lai D W C and Chow K W 2001 J. Phys. Soc. Jpn. 70 666
[3] Zhang J F 2002 Commun. Theor. Phys. 37 277
[4] Zhang S L, Zhu X N, Wang Y M and Lou S Y 2008 Commun. Theor. Phys. 49 829
[5] Zhang S L and Lou S Y 2007 Commun. Theor. Phys. 48 385
[6] Taogetusang and Sirendaoerji 2009 Acta Phys. Sin. 58 2121 (in Chinese)
[7] Taogetusang and Sirendaoerji 2009 Acta Phys. Sin. 58 5887 (in Chinese)
[8] Li B Q, Ma Y L and Xu M B 2010 Acta Phys. Sin. 59 1409 (in Chinese)
[9] Ma Y L, Li B Q and Sun J Z 2009 Acta Phys. Sin. 58 7042 (in Chinese)
[10] Kivshar Y S and Melomend B A 1989 Rev. Mod. Phys. 61 765
[11] Stegemant G I and Segev M 1999 Science 286 1518
[12] Gollub J P and Gross M C 2000 Nature 404 710
[13] Pan W Z, Song X J and Yu J 2010 Chin. Phys. B 19 030203
[14] Fang J P, Zheng C L and Zhu J M 2005 Acta Phys. Sin. 54 2990 (in Chinese)
[15] Fang J P and Zheng C L 2005 Acta Phys. Sin. 54 670 (in Chinese)
[16] Ma S H and Fang J P 2006 Acta Phys. Sin. 55 5611 (in Chinese)
[17] Ma S H, Wu X H, Fang J P and Zheng C L 2006 Z. Naturforsch. 61a 249
[18] Ma S H, Fang J P and Zhu H P 2007 Acta Phys. Sin. 56 4319 (in Chinese)
[19] Ma S H, Wu X H, Fang J P and Zheng C L 2008 Acta Phys. Sin. 57 0011 (in Chinese)
[20] Ma S H, Qiang J Y and Fang J P 2007 Acta Phys. Sin. 56 0620 (in Chinese)
[21] Ma S H, Li J B and Fang J P 2007 Commun. Theor. Phys. 48 1063
[22] Ma S H, Fang J P and Zheng C L 2008 Chin. Phys. B 17 2767
[23] Ma S H, Wu X H, Fang J P and Zheng C L 2008 Acta Phys. Sin. 57 0011 (in Chinese)
[24] Ma S H, Fang J P, Hong B H and Zheng C L 2009 Chaos Soliton. Fract. 40 1352
[25] Ma S H and Fang J P 2009 Z. Naturforsch 64a 37
[26] Ma S H, Fang J P and Zheng C L 2009 Chaos Soliton. Fract. 40 210
[27] Ma S H, Fang J P and Ren Q B 2010 Acta Phys. Sin. 59 4420 (in Chinese)
[28] Yang Z, Ma S H and Fang J P 2011 Chin. Phys. B 20 040301
[29] Ma S H, Fang J P, Ren Q B and Yang Z 2012 Chin. Phys. B 21 050511
[30] Tang X Y and Lou S Y 2003 Commun. Theor. Phys. 40 62
[31] Vakhnenkl V O 1992 J. Phys. A: Math. Gen. 25 4181
[32] Vakhnenkl V O and Parkes E J 1998 Nonlinearity 11 1457
[33] Matsutani S 1995 Mod. Phys. Lett. A 10 717
[34] Schleif M and Wunsch R 1998 Eur. Phys. J. A 1 171
[35] Durovsky V G and Konopelchenko E G 1994 J. Phys. A 27 4619
[1] Exact transverse solitary and periodic wave solutions in a coupled nonlinear inductor-capacitor network
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(9): 096301.
[2] Complex solutions and novel complex wave localized excitations for the (2+1)-dimensional Boiti-Leon-Pempinelli system
Ma Song-Hua, Xu Gen-Hai, Zhu Hai-Ping. Chin. Phys. B, 2014, 23(5): 050511.
[3] A novel (G’/G)-expansion method and its application to the Boussinesq equation
Md. Nur Alam, Md. Ali Akbar, Syed Tauseef Mohyud-Din. Chin. Phys. B, 2014, 23(2): 020203.
[4] Nonautonomous solitary-wave solutions of the generalized nonautonomous cubic–quintic nonlinear Schrödinger equation with time- and space-modulated coefficients
He Jun-Rong, Li Hua-Mei. Chin. Phys. B, 2013, 22(4): 040310.
[5] Exact solutions and localized excitations of (3+1)-dimensional Gross–Pitaevskii system
Fei Jin-Xi, Zheng Chun-Long. Chin. Phys. B, 2012, 21(7): 070304.
[6] Exact projective solutions of generalized nonlinear Schrödinger system with variable parameters
Zheng Chun-Long, Li Yin. Chin. Phys. B, 2012, 21(7): 070305.
[7] Chaotic solutions of (2+1)-dimensional Broek–Kaup equation with variable coefficients
Yang Zheng, Ma Song-Hua, Fang Jian-Ping. Chin. Phys. B, 2011, 20(4): 040301.
[8] Combined periodic wave and solitary wave solutions in two-component Bose–Einstein condensates
Yao Shu-Fang, Li Qiu-Yan, Li Zai-Dong. Chin. Phys. B, 2011, 20(11): 110307.
[9] Some exact solutions to the inhomogeneous higher-order nonlinear Schr?dinger equation by a direct method
ZhangHuan-Ping, Li Biao, Chen Yong. Chin. Phys. B, 2010, 19(6): 060302.
[10] Complex wave excitations and chaotic patterns for a general (2+1)-dimensional Korteweg--de Vries system
Ma Song-Hua, Fang Jian-Ping, Zheng Chun-Long. Chin. Phys. B, 2008, 17(8): 2767-2773.
[11] Discrete doubly periodic and solitary wave solutions for the semi-discrete coupled mKdV equations
Wu Xiao-Fei, Zhu Jia-Min, Ma Zheng-Yi. Chin. Phys. B, 2007, 16(8): 2159-2166.
[12] A kind of extended Korteweg--de Vries equation and solitary wave solutions for interfacial waves in a two-fluid system
Yang Lian-Gui, Song Jin-Bao, Yang Hong-Li, Liu Yong-Jun. Chin. Phys. B, 2007, 16(12): 3589-3594.
[13] New exact solitary wave solutions to generalized mKdV equation and generalized Zakharov--Kuzentsov equation
Taogetusang, Sirendaoreji. Chin. Phys. B, 2006, 15(6): 1143-1148.
[14] A hyperbolic function approach to constructing exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice
Zha Qi-Lao, Sirendaoreji. Chin. Phys. B, 2006, 15(3): 475-477.
[15] Two classes of fractal structures for the (2+1)-dimensional dispersive long wave equation
Ma Zheng-Yi, Zheng Chun-Long. Chin. Phys. B, 2006, 15(1): 45-52.
No Suggested Reading articles found!