Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 050511    DOI: 10.1088/1674-1056/23/5/050511
GENERAL Prev   Next  

Complex solutions and novel complex wave localized excitations for the (2+1)-dimensional Boiti-Leon-Pempinelli system

Ma Song-Hua (马松华), Xu Gen-Hai (徐根海), Zhu Hai-Ping (朱海平)
College of Science, Lishui University, Lishui 323000, China
Abstract  With the help of the symbolic computation system Maple, the Riccati equation mapping approach and a linear variable separation approach, a new family of complex solutions for the (2+1)-dimensional Boiti-Leon-Pempinelli system (BLP) is derived. Based on the derived solitary wave solution, some novel complex wave localized excitations are obtained.
Keywords:  Riccati mapping approach      Boiti-Leon-Pempinelli system      complex solutions      localized excitations  
Received:  05 September 2013      Revised:  23 October 2013      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11375079) and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y6100257 and Y6110140).
Corresponding Authors:  Zhu Hai-Ping     E-mail:  zhp63521@163.com
About author:  05.45.Yv; 03.65.Ge

Cite this article: 

Ma Song-Hua (马松华), Xu Gen-Hai (徐根海), Zhu Hai-Ping (朱海平) Complex solutions and novel complex wave localized excitations for the (2+1)-dimensional Boiti-Leon-Pempinelli system 2014 Chin. Phys. B 23 050511

[1] Lou S Y 1996 Commun. Theor. Phys. 26 487
[2] Lai D W C and Chow K W 2001 J. Phys. Soc. Jpn. 70 666
[3] Tang X Y and Lou S Y 2003 Commun. Theor. Phys. 40 62
[4] Vakhnenkl V O 1992 J. Phys. A. Math. Gen. 25 4181
[5] Vakhnenkl V O and Parkes E J 1998 Nonlinearity 11 1457
[6] Matsutani S 1995 Mod. Phys. Lett. A 10 717
[7] Schleif M and Wunsch R 1998 Eur. Phys. J. A 1 171
[8] Durovsky V G and Konopelchenko E G 1994 J. Phys. A 27 4619
[9] Zhang J F 2002 Commun. Theor. Phys. 37 277
[10] Zhang S L, Zhu X N, Wang Y M and Lou S Y 2008 Commun. Theor. Phys. 49 829
[11] Zhang S L and Lou S Y 2007 Commun. Theor. Phys. 48 385
[12] Taogetusang S 2009 Acta Phys. Sin. 58 2121 (in Chinese)
[13] Taogetusang S 2009 Acta Phys. Sin. 58 5887 (in Chinese)
[14] Ma S H, Fang J P and Zheng C L 2008 Chin. Phys.B 17 2767
[15] Li B Q, Ma Y L and Xu M B 2010 Acta Phys. Sin. 59 1409 (in Chinese)
[16] Ma Y L, Li B Q and Sun J Z 2009 Acta Phys. Sin. 58 7042 (in Chinese)
[17] Ma S H, Li J B and Fang J P 2007 Commun. Theor. Phys. 48 1063
[18] Ma S H and Fang J P 2006 Acta Phys. Sin. 55 5611 (in Chinese)
[19] Ma S H, Wu X H, Fang J P and Zheng C L 2006 Z. Naturforsch. 61a 249
[20] Ma S H, Fang J P and Zhu H P 2007 Acta Phys. Sin. 56 4319 (in Chinese)
[21] Ma S H, Wu X H, Fang J P and Zheng C L 2008 Acta Phys. Sin. 57 0011 (in Chinese)
[22] Ma S H, Qiang J Y and Fang J P 2007 Acta Phys. Sin. 56 0620 (in Chinese)
[23] Mei J Q and Zhang H Q 2005 Commun. Theor. Phys. 44 209
[24] Fang J P, Zheng C L and Zhu J M 2005 Acta Phys. Sin. 54 2990 (in Chinese)
[25] Fang J P and Zheng C L 2005 Acta Phys. Sin. 54 670 (in Chinese)
[26] Ma S H, Fang J P and Zheng C L 2009 Chaos Soliton. Fract. 40 210
[27] Ma S H, Fang J P and Ren Q B 2010 Acta Phys. Sin. 59 4420
[28] Yang Z, Ma S H and Fang J P 2011 Chin. Phys. B 20 040301
[29] Ma S H, Fang J P, Ren Q B and Yang Z 2012 Chin. Phys. B 21 050511
[30] Ma S H, Wu X H, Fang J P and Zheng C L 2008 Acta Phys. Sin. 57 0011 (in Chinese)
[31] Ma S H, Fang J P, Hong B H and Zheng C L 2009 Chaos Soliton. Fract. 40 1352
[32] Ma S H and Fang J P 2009 Z. Naturforsch. A 64a 37
[33] Dai C Q and Ni Y Z 2006 Physica Scripta 74 584
[1] Interaction between two folded solitary waves for a modified Broer--Kaup system
Wu Xiao-Fei (吴晓飞), Zhu Jia-Min (朱加民), Ma Zheng-Yi (马正义). Chin. Phys. B, 2005, 14(12): 2395-2401.
No Suggested Reading articles found!