Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 010507    DOI: 10.1088/1674-1056/22/1/010507
GENERAL Prev   Next  

Nonautonomous solitons in the continuous wave background of the variable-coefficient higher-order nonlinear Schrödinger equation

Dai Chao-Qing (戴朝卿), Chen Wei-Lu (陈未路)
School of Sciences, Zhejiang Agricultural and Forestry University, Lin'an 311300, China
Abstract  We reduce the variable-coefficient higher-order nonlinear Schrödinger equation (VCHNLSE) into constant-coefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical soliton solutions embedded in the continuous wave background for the VCHNLSE. Then the excitation in advance and sustainment of soliton arrays, and postponed disappearance and sustainment of the bright soliton embedded in the background are discussed in an exponential system.
Keywords:  higher-order nonlinear Schrödinger equation      soliton solution      continuous wave background      postponed disappearance and sustainment of soliton  
Received:  05 March 2012      Revised:  05 August 2012      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11005092) and the Program for Innovative Research Team of Young Teachers of Zhejiang Agricultural and Forestry University, China (Grant No. 2009RC01).
Corresponding Authors:  Dai Chao-Qing     E-mail:  dcq424@126.com

Cite this article: 

Dai Chao-Qing (戴朝卿), Chen Wei-Lu (陈未路) Nonautonomous solitons in the continuous wave background of the variable-coefficient higher-order nonlinear Schrödinger equation 2013 Chin. Phys. B 22 010507

[1] Haus H A, Wong W S1996 Rev. Mod. Phys. 68 423
[2] de Oliveria J R and de Moura M A 1998 Phys. Rev. E 57 4751
[3] Mitschke F M and Mollenauer L F 1986 Opt. Lett. 11 659
[4] Li S Q, Li L, Li Z H and Zhou G S 2004 J. Opt. Soc. Am. B 21 2089
[5] Wang H and Li B 2011 Chin. Phys. B 20 040203
[6] Zhang X F, Zhang P, He W Q and Liu X X 2011 Chin. Phys. B 20 020307
[7] Liu X B and Li B 2011 Chin. Phys. B 20 114219
[8] Ma Z Y and Ma S H 2012 Chin. Phys. B 21 030507
[9] Xu S L, Liang J C and Li Z M 2011 Chin. Phys. B 20 114214
[10] Dai C Q and Zhang J F 2006 J. Phys. A: Math. Gen. 39 723
[11] Dai C Q, Zhou G Q and Zhang J F 2012 Phys. Rev. E 85 016603
[12] Chen Y M, Ma S H and Ma Z Y 2012 Chin. Phys. B 21 050510
[13] Dai C Q, Wang Y Y and Zhang J F 2010 Opt. Lett. 35 1437
[14] Dai C Q, Chen R P and Wang Y Y 2012 Chin. Phys. B 21 030508
[15] Hao R Y, Li L, Li Z H and Zhou G S 2004 Phys. Rev. E 70 066603
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[5] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[6] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[7] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
[8] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[9] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[10] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
[11] N-soliton solutions for the nonlocal two-wave interaction system via the Riemann-Hilbert method
Si-Qi Xu(徐思齐), Xian-Guo Geng(耿献国). Chin. Phys. B, 2018, 27(12): 120202.
[12] Soliton and rogue wave solutions of two-component nonlinear Schrödinger equation coupled to the Boussinesq equation
Cai-Qin Song(宋彩芹), Dong-Mei Xiao(肖冬梅), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2017, 26(10): 100204.
[13] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[14] Nonautonomous dark soliton solutions in two-component Bose-Einstein condensates with a linear time-dependent potential
Li Qiu-Yan (李秋艳), Wang Shuang-Jin (王双进), Li Zai-Dong (李再东). Chin. Phys. B, 2014, 23(6): 060310.
[15] Periodic solitons in dispersion decreasingfibers with a cosine profile
Jia Ren-Xu (贾仁需), Yan Hong-Li (闫宏丽), Liu Wen-Jun (刘文军), Lei Ming (雷鸣). Chin. Phys. B, 2014, 23(10): 100502.
No Suggested Reading articles found!