Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 010504    DOI: 10.1088/1674-1056/22/1/010504
GENERAL Prev   Next  

A new image encryption algorithm based on fractional-order hyperchaotic Lorenz system

Wang Zhena, Huang Xiab, Li Yu-Xiab, Song Xiao-Nac
a College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
b Key Laboratory of Robotics and Intelligent Technology, College of Information and Electrical Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
c College of Electronic and Information Engineering, Henan University of Science and Technology, Luoyang 471003, China
Abstract  We propose a new image encryption algorithm on a basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security. Such an algorithm is detailed in terms of security analyses, including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.
Keywords:  image encryption      fractional order      hyperchaotic Lorenz system     
Received:  22 April 2012      Published:  01 December 2012
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Vx (Communication using chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61004078 and 60971022), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2009GQ009 and ZR2009GM005), the China Postdoctoral Science Foundation (Grant No. 20100481293), and the Special Funds for Postdoctoral Innovative Projects of Shandong Province, China (Grant No. 201003037).
Corresponding Authors:  Huang Xia     E-mail:  huangxia.qd@gmail.com

Cite this article: 

Wang Zhen, Huang Xia, Li Yu-Xia, Song Xiao-Na A new image encryption algorithm based on fractional-order hyperchaotic Lorenz system 2013 Chin. Phys. B 22 010504

[1] Yu W W and Cao J D 2006 Phys. Lett. A 356 333
[2] Wang K, Pei W J, Zhou J T, Zhang Y F and Zhou S Y 2011 Acta Phys. Sin. 60 070503 (in Chinese)
[3] Wang Z, Huang X, Li N and Song X N 2012 Chin. Phys. B 21 050506
[4] Tang Y, Wang Z D and Fang J A 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 2456
[5] Tong X J and Cui M G 2009 Signal Processing 89 480
[6] Kocarev L and Jakimoski G 2001 Phys. Lett. A 289 199
[7] Yang T, Wu C W and Chua L O 1997 IEEE Trans. Circuits Syst. I 44 469
[8] Wang X Y and Zhao J F 2010 Neurocomputing 73 3224
[9] Kiani-B A, Fallahi K, Pariz N and Leung H 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 863
[10] Schneier B 1996 Applied Cryptography (New York: John Wiley & Sons)
[11] Chang C C, Hwang M S and Chen T S 2001 Journal of System and Software 58 83
[12] Shannon C E 1949 Bell System Technical Journal 28 656
[13] Fridrich J 1998 Int. J. Bifurcat. Chaos 8 1259
[14] Podlubny I 1999 Fractional Differential Equations (New York: Academic)
[15] Heaviside O 1971 Electromagnetic Theory (New York: Chelsea)
[16] Sun H G, Chen W and Chen Y Q 2009 Physica A 388 4586
[17] Sun H G, Chen W, Li C P and Chen Y Q 2010 Physica A 389 2719
[18] Zhang R X and Yang S P 2009 Acta Phys. Sin. 58 2957 (in Chinese)
[19] Zhang R X and Yang S P 2009 Chin. Phys. B 18 3295
[20] Chen Y Q, Ahn H S and Xue D Y 2006 Signal Processing 86 2794
[21] Liu Y and Xie Y 2010 Acta Phys. Sin. 59 2147 (in Chinese)
[22] Yu Y G, Li H X, Wang S and Yu J Z 2009 Chaos Soliton. Fract. 42 1181
[23] Li C P and Chen G R 2004 Physica A 341 55
[24] Lu J G 2005 Chaos Soliton. Fract. 26 1125
[25] Podlubny I 2002 J. Fract. Calc. 5 367
[26] Wang S H, Kuang J Y, Li J H, Luo Y L, Lu H P and Hu G 2002 Phys. Rev. E 66 065202
[27] Gao T G and Chen Z Q 2008 Phys. Lett. A 372 394
[28] Rhouma R and Belghith S 2008 Phys. Lett. A 372 5790
[29] Deng W H 2007 J. Comput. Appl. Math. 206 174
[30] Dadras S and Momeni H R 2010 Physica A 389 2434
[31] Tavazoei M S and Haeri M Physica A 387 57
[32] Behnia S, Akhshani A, Akhavan A and Mahmpdi H 2009 Chaos Soliton. Fract. 40 505
[33] Zhang X F and Fan J L 2010 Comput. Sci. 2 264 (in Chinese)
[1] Memristor-based hyper-chaotic circuit for image encryption
Jiao-Jiao Chen(陈娇娇), Deng-Wei Yan(闫登卫), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2020, 29(11): 110504.
[2] Phase retrieval algorithm for optical information security
Shi-Qing Wang(王诗晴), Xiang-Feng Meng(孟祥锋), Yu-Rong Wang(王玉荣), Yong-Kai Yin(殷永凯), Xiu-Lun Yang(杨修伦). Chin. Phys. B, 2019, 28(8): 084203.
[3] New chaotical image encryption algorithm based on Fisher-Yatess scrambling and DNA coding
Xing-Yuan Wang(王兴元), Jun-Jian Zhang(张钧荐), Fu-Chen Zhang(张付臣), Guang-Hui Cao(曹光辉). Chin. Phys. B, 2019, 28(4): 040504.
[4] Efficient image encryption scheme with synchronous substitution and diffusion based on double S-boxes
Xuan-Ping Zhang(张选平), Rui Guo(郭瑞), Heng-Wei Chen(陈恒伟), Zhong-Meng Zhao(赵仲孟), Jia-Yin Wang(王嘉寅). Chin. Phys. B, 2018, 27(8): 080701.
[5] Multiple-image encryption by two-step phase-shifting interferometry and spatial multiplexing of smooth compressed signal
Xue Zhang(张学), Xiangfeng Meng(孟祥锋), Yurong Wang(王玉荣), Xiulun Yang(杨修伦), Yongkai Yin(殷永凯). Chin. Phys. B, 2018, 27(7): 074205.
[6] Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes-Vanstone elliptic curve cryptosystem
Zeyu Liu(刘泽宇), Tiecheng Xia(夏铁成), Jinbo Wang(王金波). Chin. Phys. B, 2018, 27(3): 030502.
[7] Nonlinear fast-slow dynamics of a coupled fractional order hydropower generation system
Xiang Gao(高翔), Diyi Chen(陈帝伊), Hao Zhang(张浩), Beibei Xu(许贝贝), Xiangyu Wang(王翔宇). Chin. Phys. B, 2018, 27(12): 128202.
[8] A novel pseudo-random coupled LP spatiotemporal chaos and its application in image encryption
Xingyuan Wang(王兴元), Yu Wang(王宇), Siwei Wang(王思伟), Yingqian Zhang(张盈谦), Xiangjun Wu(武相军). Chin. Phys. B, 2018, 27(11): 110502.
[9] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[10] Using wavelet multi-resolution nature to accelerate the identification of fractional order system
Yuan-Lu Li(李远禄), Xiao Meng(孟霄), Ya-Qing Ding(丁亚庆). Chin. Phys. B, 2017, 26(5): 050201.
[11] An image encryption scheme based on three-dimensional Brownian motion and chaotic system
Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Ke Yuan(袁科), Yang Lu(路杨), Yi-Ran Chen(陈怡然). Chin. Phys. B, 2017, 26(2): 020504.
[12] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[13] A self-cited pixel summation based image encryption algorithm
Guo-Dong Ye(叶国栋), Xiao-Ling Huang(黄小玲), Leo Yu Zhang(张愉), Zheng-Xia Wang(王政霞). Chin. Phys. B, 2017, 26(1): 010501.
[14] Image encryption using random sequence generated from generalized information domain
Xia-Yan Zhang(张夏衍), Guo-Ji Zhang(张国基), Xuan Li(李璇), Ya-Zhou Ren(任亚洲), Jie-Hua Wu(伍杰华). Chin. Phys. B, 2016, 25(5): 054201.
[15] A novel color image encryption algorithm based on genetic recombination and the four-dimensional memristive hyperchaotic system
Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Yang Lu(路杨), Miao-Hui Zhang(张苗辉), Yi-Ran Chen(陈怡然). Chin. Phys. B, 2016, 25(10): 100503.
No Suggested Reading articles found!