Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 067501    DOI: 10.1088/1674-1056/21/6/067501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The mixed-spins 1/2 and 3/2 Blume–Capel model with a random crystal field

Erhan Albayrak
Erciyes University, Department of Physics, 38039, Kayseri, Turkey
Abstract  The random crystal field (RCF) effects are investigated on the phase diagrams of the mixed-spins 1/2 and 3/2 Blume-Capel (BC) model on the Bethe lattice. The bimodal random crystal field is assumed and the recursion relations are employed for the solution of the model. The system gives only the second-order phase transitions for all values of the crystal fields in the non-random bimodal distribution for given probability. The randomness does not change the order of the phase transitions for higher crystal field values, i.e., it is always second-order, but it may introduce first-order phase transitions at lower negative crystal field values for the probability in the range about 0.20 and 0.45, which is only the second-order for the non-random case in this range. Thus our work claims that randomness may be used to induce first-order phase transitions at lower negative crystal field values at lower probabilities.
Keywords:  randomness      crystal field      Bethe lattice      mixed spin      bimodal     
Received:  25 August 2011      Published:  01 May 2012
PACS:  75.10.Hk (Classical spin models)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  75.50.Gg (Ferrimagnetics)  
Corresponding Authors:  Erhan Albayrak     E-mail:  albayrak@erciyes.edu.tr

Cite this article: 

Erhan Albayrak The mixed-spins 1/2 and 3/2 Blume–Capel model with a random crystal field 2012 Chin. Phys. B 21 067501

[1] Maritan A, Cieplak M, Swift M R, Toigo F and Banavar J R 1992 Phys. Rev. Lett. 69 221
[2] Jiang W, Wei G Z and Xin Z H 2001 Physica A 293 455
[3] Benayad N, Dakhama A, Kl黰per and Zittartz J 1996 Ann. Physik 5 387
[4] Bob醟 A and Jurčišin M 1997 J. Phys. IV France 7 C1-179
[5] Buendia G M and Cardano R 1999 Phys. Rev. B 59 6784
[6] Albayrak E and Alçi A 2005 Physica A 345 48
[7] Strečka J 2006 Phys. Stat. Sol. B 243 708
[8] Bob醟 A, Feckov? Z and Žukovič M 2011 J. Magn. Magn. Mater. 323 813
[9] Kaneyoshi T 1989 Solid State Commun. 69 695
[10] Kaneyoshi T 1989 Physica A 155 460
[11] Kaneyoshi T 1988 Physica A 153 556
[12] Bahmad L, Benyoussef A and Kenz A El 2008 Physica A 387 825
[13] Benyoussef A, Kenz A El and Yadari M El 2007 Physica B 393 204
[14] Benayad N, Zerhouni R and Kl黰per A 1998 Eur. Phys. J. B 5 687
[15] Albayrak E 2003 Int. J. Mod. Phys. 17 1087
[16] Albayrak E 2003 Phys. Stat. Sol. B 239 411
[17] Albayrak E 2011 J. Magn. Magn. Mater. 323 2846
[1] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[2] Improved quantum randomness amplification with finite number of untrusted devices based on a novel extractor
Ming-Feng Xu(徐明峰), Wei Pan(潘炜), Lian-Shan Yan(闫连山), Bin Luo(罗斌), Xi-Hua Zou(邹喜华), Peng-Hua Mu(穆鹏华), Li-Yue Zhang(张力月). Chin. Phys. B, 2018, 27(1): 010305.
[3] Magnetic phase diagrams of Fe-Mn-Al alloy on the Bethe lattice
Erhan Albayrak. Chin. Phys. B, 2017, 26(2): 020502.
[4] Analysis of field coupling to transmission lines with random rotation over the ground
Xie Hai-Yan, Li Yong, Qiao Hai-Liang, Wang Jian-Guo. Chin. Phys. B, 2015, 24(6): 060501.
[5] Spin-1 Blume–Capel model with longitudinal random crystaland transverse magnetic fields:a mean-field approach
Erhan Albayrak. Chin. Phys. B, 2013, 22(7): 077501.
[6] Calculating Hamiltonian parameters for Yb3+ in a low-symmetry lattice site, and fitting the structure and levels of Yb3+:RETaO4 (RE=Gd, Y, and Sc)
Zhang Qing-Li, Ning Kai-Jie, Ding Li-Hua, Liu Wen-Peng, Sun Dun-Lu, Jiang Hai-He, Yin Shao-Tang. Chin. Phys. B, 2013, 22(6): 067105.
[7] Monte Carlo study of nanowire magnetic properties
R. Masrour, L. Bahmad, A. Benyoussef. Chin. Phys. B, 2013, 22(5): 057504.
[8] Dynamic magnetic behavior of the mixed spin (2, 5/2) Ising system with antiferromagnetic/antiferromagnetic interactions on a bilayer square lattice
Mehmet Ertaş, Mustafa Keskin. Chin. Phys. B, 2013, 22(12): 120507.
[9] Phase diagrams of spin-3/2 Ising model in the presence of random crystal field within the effective field theory based on two approximations
Ali Yigit, Erhan Albayrak. Chin. Phys. B, 2013, 22(10): 100508.
[10] Critical properties of mixed spin-1 and spin-5/2 with equal and unequal crystal fields
Ali Yigit,Erhan Albayrak. Chin. Phys. B, 2012, 21(2): 020511.
[11] Phase diagrams of the spin-2 Ising model in the presence of a quenched diluted crystal field distribution
Ali Yigit, Erhan Albayrak. Chin. Phys. B, 2012, 21(11): 110503.
[12] Simulation of the f–d transitions of lanthanide ions in YPO4 using quantum-chemical calculations
Hu Liu-Sen, Wen Jun, Yin Min, Xia Shang-Da. Chin. Phys. B, 2012, 21(1): 017801.
[13] Phase diagrams in mixed spin-3/2 and spin-2 Ising system with two alternative layers within the effective-field theory
Bayram Deviren, Yasin Polat, Mustafa Keskin. Chin. Phys. B, 2011, 20(6): 060507.
[14] Analyses of crystal field and exchange interaction of Dy3Ga5O12 under extreme conditions
Wang Wei, Qi Xin, Yue Yuan. Chin. Phys. B, 2011, 20(1): 017502.
[15] Method for fitting crystal field parameters and the energy level fitting for Yb3+ in crystal Sc2O3
Zhang Qing-Li, Ning Kai-Jie, Xiao Jin, Ding Li-Hua, Zhou Wen-Long, Liu Wen-Peng, Yin Shao-Tang, Jiang Hai-He. Chin. Phys. B, 2010, 19(8): 087501.
No Suggested Reading articles found!