Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100505    DOI: 10.1088/1674-1056/21/10/100505
GENERAL Prev   Next  

Chaos in a fractional-order micro-electro-mechanical resonator and its suppression

Mohammad Pourmahmood Aghababa
Electrical Engineering Department, Urmia University of Technology, Urmia, Iran
Abstract  The present paper investigates the existence of chaos in a non-autonomous fractional-order micro-electro-mechanical resonator system (FOMEMRS). Using the maximal Lyapunov exponent criterion, we show that the FOMEMRS exhibits chaos. Strange attractors of the system are plotted to validate its chaotic behavior. Afterward, a novel fractional finite-time controller is introduced to suppress the chaos of the FOMEMRS with model uncertainties and external disturbances in a given finite time. Using the latest version of the fractional Lyapunov theory, the finite time stability and robustness of the proposed scheme are proved. Finally, we present some computer simulations to illustrate the usefulness and applicability of the proposed method.
Keywords:  micro-electro-mechanical resonator      chaotic behavior      fractional calculus      fractional finite-time controller  
Received:  14 January 2012      Revised:  06 April 2012      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.30.Pr (Fractional statistics systems)  
  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
  02.30.Yy (Control theory)  
Corresponding Authors:  Mohammad Pourmahmood Aghababa     E-mail:  m.p.aghababa@ee.uut.ac.ir; m.pour13@gmail.com

Cite this article: 

Mohammad Pourmahmood Aghababa Chaos in a fractional-order micro-electro-mechanical resonator and its suppression 2012 Chin. Phys. B 21 100505

[1] Lyshevski S E 2001 MEMS and NEMS: Systems, Devices, and Structures (Boca Raton: CRC Press)
[2] Lyshevski S E 2003 Energy Conversion Manage 44 667
[3] Zhu G, Lévine J, Praly L and Peter Y A 2006 J Microelectromech. Syst. 15 1165
[4] Xie H and Fedder G 2002 Sens. Actuat. A 95 212
[5] Mestrom R M C, Fey R H B, van Beek J T M, Phan K L and Nijmeijer H 2007 Sens. Actuat. A 142 306
[6] Younis M I and Nayfeh A H 2003 Nonlinear Dyn. 31 91
[7] Braghin F, Resta F, Leo E and Spinola G 2007 Sens. Actuat. A 134 98
[8] Wang Y C, Adams S G, Thorp J S, MacDonald N C, Hartwell P, Bertsch F, et al. 1998 IEEE Trans. Circ. Syst. I 45 1013
[9] De S K and Aluru N R 2006 J. Microelectromech. Syst. 15 355
[10] Luo A and Wang F Y 2002 Commun. Nonlinear Sci. Numer. Simul. 7 31
[11] Chavarette F R, Balthazar J M, Felix J L P and Rafikov M 2009 Commun. Nonlinear Sci. Numer. Simul. 14 1844
[12] Barry E, De M, Butterfield E, Moehlis J and Turner K 2007 J. Microelectromech. Syst. 16 1314
[13] Liu S, Davidson A and Lin Q 2004 J. Micromech. Microeng. 14 1064
[14] Haghighi H H and Markazi A H D 2010 Commun. Nonlinear Sci. Numer. Simul. 15 3091
[15] Yau H T, Wang C C, Hsieh C T and Cho C C 2011 Comput. Math. Appl. 61 1912
[16] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[17] Hilfer R 2001 Applications of Fractional Calculus in Physics (New Jersey: World Scientific)
[18] Rapaić M R and Jeličić Z D 2010 Nonlinear Dyn. 62 39
[19] Luo Y, Chen Y Q and Pi Y 2011 Mechatronics 21 204
[20] Laskin N 2000 Physica A 287 482
[21] Rivero M, Trujillo J J, Vázquez L and Velasco M P 2011 Appl. Math. Comput. 218 1089
[22] Cao J, Ma C, Jiang Z and Liu S 2011 Commun. Nonlinear Sci. Numer. Simul. 16 1443
[23] Petráš I 2009 Nonlinear Dyn. 57 157
[24] Wu X and Wang H 2010 Nonlinear Dyn. 61 407
[25] Ge Z M and Jhuang W R 2007 Chaos, Solitons and Fractals 33 270
[26] Ge Z M and Yi C X 2007 Chaos, Solitons and Fractals 32 42
[27] Aghababa M P 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2670
[28] Aghababa M P 2011 Nonlinear Dyn. doi:10.1007/s11071-011-0261-6
[29] Li Y, Chen Y Q and Podlubny I 2009 Automatica 45 1965
[30] Rosenstein M T, Collins J J and De Luca C J 1993 Physica D 65 117
[31] Hardy G H, Littlewood J E and Polya G 1952 Inequalities (Cambridge: Cambridge University Press)
[32] Utkin V I 1992 Sliding Modes in Control Optimization (Berlin: Springer-Verlag)
[33] Diethelm K, Ford N J and Freed A D 2002 Nonlinear Dyn. 29 3
[1] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[2] Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order
Qiu-Yan He(何秋燕), Bo Yu(余波), Xiao Yuan(袁晓). Chin. Phys. B, 2017, 26(4): 040202.
[3] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[4] Abundant solutions of Wick-type stochastic fractional 2D KdV equations
Hossam A. Ghany, Abd-Allah Hyder. Chin. Phys. B, 2014, 23(6): 060503.
[5] The fractional coupled KdV equations:Exact solutions and white noise functional approach
Hossam A. Ghany, A. S. Okb El Bab, A. M. Zabel, Abd-Allah Hyder. Chin. Phys. B, 2013, 22(8): 080501.
[6] Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative
Rajneesh Kumar, Vandana Gupta. Chin. Phys. B, 2013, 22(7): 074601.
[7] Transfer function modeling and analysis of the open-loop Buck converter using the fractional calculus
Wang Fa-Qiang, Ma Xi-Kui. Chin. Phys. B, 2013, 22(3): 030506.
[8] Chaotic behaviors of the (2+1)-dimensional generalized Breor–Kaup system
Ma Song-Hua,Fang Jian-Ping,Ren Qing-Bao,Yang Zheng. Chin. Phys. B, 2012, 21(5): 050511.
[9] A new generalized fractional Dirac soliton hierarchy and its fractional Hamiltonian structure
Wei Han-Yu, Xia Tie-Cheng. Chin. Phys. B, 2012, 21(11): 110203.
[10] Exact solutions for nonlinear partial fractional differential equations
Khaled A. Gepreel, Saleh Omran. Chin. Phys. B, 2012, 21(11): 110204.
[11] Chaotic behavior learning of Chua's circuit
Sun Jian-Cheng. Chin. Phys. B, 2012, 21(10): 100502.
[12] A general method for synchronizing an integer-order chaotic system and a fractional-order chaotic system
Si Gang-Quan, Sun Zhi-Yong, Zhang Yan-Bin. Chin. Phys. B, 2011, 20(8): 080505.
[13] Synchronization in a unified fractional-order chaotic system
Wu Zheng-Mao, Xie Jian-Ying. Chin. Phys. B, 2007, 16(7): 1901-1907.
[14] Chaotic dynamics of the fractional-order Ikeda delay system and its synchronization
Lu Jun-Guo. Chin. Phys. B, 2006, 15(2): 301-305.
[15] Chaotic dynamics and synchronization of fractional-order Genesio--Tesi systems
Lu Jun-Guo. Chin. Phys. B, 2005, 14(8): 1517-1521.
No Suggested Reading articles found!