Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 050304    DOI: 10.1088/1674-1056/20/5/050304
GENERAL Prev   Next  

Coherence generation and population transfer in a three-level ladder system

Zhang Bing(张冰)a)b)c)d), Jiang Yun(姜云)a)b), Wang Gang(王刚)a)b), Zhang Li-Da(张理达)a)b), Wu Jin-Hui(吴金辉) a)b), and Gao Jin-Yue(高锦岳)a)b)†
a College of Physics, Jilin University, Changchun 130023, Chinab Key Laboratory of Coherent Light and Atomic and Molecular Spectroscopy of Educational Ministry, Changchun 130023, China; c College of Physics and Electronic Engineering, Mudanjiang Teachers' College, Mudanjiang 157012, Chinad Heilongjiang Superhard Materials Key Laboratory, Mudanjiang 157012, China
Abstract  This work explores the effect of spontaneous emission on coherence generation and population transfer in a three-level ladder atomic system driven by two pulses in counterintuitive order. With adiabatic evolution and the weak-dephasing approximation, we find that a large coherence and population transfer can be achieved even with spontaneous decay rate. The maximum coherence and population transfer decrease with the increase of spontaneous decay rate from the highest state to intermediate state. But this effect can be compensated by shortening the pulse width and enlarging the delay time. Results show that the coherence generation and population transfer never depend on the spontaneous decay rate from the intermediate state to ground state. The validity of the analytic solution is examined by numerical calculation.
Keywords:  coherence      population transfer      spontaneous decay  
Received:  03 September 2010      Revised:  17 January 2011      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.55.Ah (General laser theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10774059), the National Basic Research Program of China (Grant No. 2006CB921101), and the Natural Science Foundation of Heilongjiang Province, China (Grant No. F200928).

Cite this article: 

Zhang Bing(张冰), Jiang Yun(姜云), Wang Gang(王刚), Zhang Li-Da(张理达), Wu Jin-Hui(吴金辉), and Gao Jin-Yue(高锦岳) Coherence generation and population transfer in a three-level ladder system 2011 Chin. Phys. B 20 050304

[1] Vitanov N V, Halfmann T, Shore B W and Bergmann K 2001 Rev. Phys. Chem. 52 763
[2] Payne M G and Deng L 2001 Phys. Rev. A 64 031802
[3] Kozuma M, Akamatsu D, Deng L, Hagley E W and Payne M G 2002 Phys. Rev. A 66 031801
[4] Wang H H, Du D M, Fan Y F, Li A J, Wang L, Wei X G, Kang Z H, Jiang Y, Wu J H and Gao J Y 2008 Appl. Phys. Lett. 93 231107
[5] Payne M G and Deng L 2002 Phys. Rev. A bf 65 063806
[6] Wang H H, Wang L, Wei X G, Li Y J, Du D M, Kang Z H, Jiang Y and Gao J Y 2008 Appl. Phys. Lett. 92 041107
[7] Jain M, Xia H, Yin G Y, Merriam A J and Harris S E 1996 Phys. Rev. Lett. 77 4326
[8] Wang L, Song X L, Li A J, Wang H H, Wei X G, Kang Z H, Jiang Y and Gao J Y 2008 Opt. Lett. 33 2380
[9] Li A J, Song X L, Wei X G, Wang L and Gao J Y 2008 Phys. Rev. A 77 053806
[10] Zhang B, Xu W H, Zhang H F and Gao J Y 2004 Chin. Phys. bf13 1722
[11] Jia G R , Ren Z Z, Wu S L and Zhang X Z 2009 Chin. Phys. B bf18 5272
[12] Li X H, Zhang X Z, Zhang R Z and Yang X D 2007 Chin. Phys. B bf16 2924
[13] Kis Z and Renzoni F 2002 Phys. Rev. A 65 032318
[14] Ye C Y, Sautenkov V A, Rostovtsev Y V and Scully M O 2003 Opt. Lett. 28 2213
[15] Remacle F and Levine R D 2006 Phys. Rev. A bf 73 033820
[16] Gaubatz U, Rudecki P, Schiemann S and Bergmann K 1990 J. Chem. Phys. 92 5363
[17] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
[18] Vitanov N V, Fleischhauer M, Shore B W and Bergmann K 2001 Opt. Phys. 46 55
[19] Broers B, van den Heuvell H B and Noordam L D 1992 Phys. Rev. Lett. 69 2062
[20] Maas D J, Rella C W, Antoine P, Toma E S and Noordam L D 1999 Phys. Rev. A 59 1374
[21] Rickes T, Yatsenko L P, Steuerwald S, Halfmann T, Shore B W, Vitanov N V and Bergmann K 2000 J. Chem. Phys. 113 534
[22] Rangelov A A, Vitanov N V, Yatsenko L P, Shore B W, Halfmann T and Bergmann K 2005 Phys. Rev. A 72 053403
[23] Xue Y, Wang G, Wu J H and Gao J Y 2007 Phys. Rev. A 75 063832
[24] Sangouard N, Yatsenko L P, Shore B W and Halfmann T 2006 Phys. Rev. A 73 043415
[25] Camp H A, Shah M H, Trachy M L, Weaver O L and DePaola B D 2005 Phys. Rev. A 71 053401
[26] Yatsenko L P, Rangelov A A, Vitanov N V and Shore B W 2006 J. Chem.Phys. 125 014302
[27] Almazor M L, Dulieu O, Elbs M, Tiemann E and Masnou-Seeuws F 1999 Eur. Phys. J. D 5 237
[28] Fernandez R G, Ekers A, YatsenkoL P, Vitanov N V and Bergmann K 2005 Phys. Rev. Lett. 95 043001
[29] S"uptitz W, Duncan B C and Gould P L 1997 J. Opt. Soc. Am. B 14 1001
[30] Ivanov P A, Vitanov N V and Bergmann K 2004 Phys. Rev. A 70 063409
[31] Ivanov P A, Vitanov N V and Bergmann K 2005 Phys. Rev. A 72 053412
[32] Band Y B 1992 Phys. Rev. A 45 6643 endfootnotesize
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[5] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[6] Coherence migration in high-dimensional bipartite systems
Zhi-Yong Ding(丁智勇), Pan-Feng Zhou(周攀峰), Xiao-Gang Fan(范小刚),Cheng-Cheng Liu(刘程程), Juan He(何娟), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(6): 060308.
[7] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[8] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[9] Effects of mesoscale eddies on the spatial coherence of a middle range sound field in deep water
Fei Gao(高飞), Fang-Hua Xu(徐芳华), and Zheng-Lin Li(李整林). Chin. Phys. B, 2022, 31(11): 114302.
[10] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[11] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
[12] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[13] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[14] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[15] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
No Suggested Reading articles found!