Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 046102    DOI: 10.1088/1674-1056/20/4/046102

The effect of Si content on the martensitic transfor-mation temperature of Ni55.5e18Ga26.5–xSix alloys

Shen Hua-Hai(申华海)a),Yu Hua-Jun(余华军)b), Fu Hao(付浩)a), Guo Yuan-Jun(郭袁俊) a), Fu Yong-Qing(傅永庆)c),and Zu Xiao-Tao(祖小涛)a)
a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China; b The College of Physics and Electronic Information, Gannan Normal University, Ganzhou 314000, Jiangxi Province, China; c School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, UK
Abstract  This paper investigates the effects of substitution of Si for Ga on the martensitic transformation behaviours in Ni--Fe--Ga alloys by  using optical metallographic microscope and differential scanning calorimetry (DSC) methods. The structure type of Ni$_{55.5}$Fe$_{18}$Ga$_{26.5  - x}$Si$_{x}$ alloys is determined by x-ray diffraction (XRD), and the XRD patterns show the microstructure of Ni--Fe--Ga--Si alloys transformed  from body-centred tetragonal martensite (with Si content $x = 0$) to body-centred cubic austenite (with $x = 2$) at room temperature. The  martensitic transformation temperatures of the Ni$_{55.5}$Fe$_{18}$Ga$_{26.5 - x}$Si$_{x}$ alloys decrease almost linearly with increasing Si  content in the Si content range of $x \le  3$. Thermal treatment also plays an important role on martensitic transformation temperatures in the Ni--Fe--Ga--Si alloy. The valence electronic concentrations, size factor, L2$_{1}$ degree of order and strength of parent phase influence the  martensitic transformation temperatures of the Ni--Fe--Ga--Si alloys. An understanding of the relationship between martensitic transformation  temperatures and Si content will be significant for designing an appropriate Ni--Fe--Ga--Si alloy for a specific application at a given  temperature.
Keywords:  Ni–Fe–Ga alloys      ferromagnetic shape memory alloys      martensitic transformation      thermal treatment  
Received:  18 June 2010      Revised:  22 November 2010      Accepted manuscript online: 
PACS:  61.66.Dk (Alloys )  
  81.30.Kf (Martensitic transformations)  
  75.10.-b (General theory and models of magnetic ordering)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10976007), the Fundamental Research Funds for the Central Universities (Grant Nos. ZYGX2009J046 and ZYGX2009X007) and Royal Academy of Engineering-Research Exchanges with China and India Awards in UK.

Cite this article: 

Shen Hua-Hai(申华海), Yu Hua-Jun(余华军), Fu Hao(付浩), Guo Yuan-Jun(郭袁俊), Fu Yong-Qing(傅永庆), and Zu Xiao-Tao(祖小涛) The effect of Si content on the martensitic transfor-mation temperature of Ni55.5e18Ga26.5–xSix alloys 2011 Chin. Phys. B 20 046102

[1] Ullakko K, Huang J K, Kantner C, O'Handley R C and Kokorin V V 1996 Appl. Phys. Lett. 69 1966
[2] Murray S J, Marioni, Allen S M, O'Handley R C and Lograsso T A 2000 Appl. Phys. Lett. 77 886
[3] Gejima F, Sutou Y, Kainuma R and Ishida K 1999 Metall. Mater. Trans. A 30 2721
[4] Kakeshita T and Fukeuchi T 2002 Mater. Sci. Forum 394--395 531
[5] Oikawa K, Ota T, Gejima F, Ohmori T, Kainuma R and Ishida K 2001 Mater. Trans. 42 2472
[6] Oikawa K, Ota T, Ohmori T, Tanaka Y, Morito H, Fujita A, Kainuma R, Fukamichi K and Ishida K 2002 Appl. Phys. Lett. 81 5201
[7] Morito H, Oikawa K, Fujita A, Fukamichi K, Kainuma R, Ishida K and Fukuda T 2005 J. Magn. Magn. Mater. 290--291 850
[8] Zheng H X, Liu J, Xia M X and Li J G 2005 J. Alloy. Compd. 387 265
[9] Yu H J, Fu H, Wang Z G and Zu X T 2009 Mater. Sci. Eng. A 507 37
[10] Chernenko V A 1999 Scr. Mater. 40 523
[11] Liu Z H, Liu H, Zhang X X, Zhang M, Dai X F, Hu H N, Chen J L and Wu G H 2004 Phys. Lett. A 329 214
[12] Jin X, Marioni M, Bono D, Allen S M, O'Handley R C and Hsu T Y 2002 J. Appl. Phys. 91 8222
[13] Kokorin V V, Osipenko I A and Shirina T V 1989 Phys. Met. Metallogr. 67 173
[14] Zhao H, Guan Y F and Zhu B 1992 General Chemistry (Shanghai: East China Normal University Press) p. 365 (in Chinese)
[15] Chen F, Wang H B, Zheng Y F, Cai W and Zhao L C 2005 J. Mater. Sci. 40 219
[16] Wu J X, Jiang B H and Hsu T Y 1988 Acta Metallur. 36 1521
[17] Miyazaki S and Otsuka K 1989 ISIJ Int. 29 353
[18] Hsu T Y 1999 Martensitic Transformation and Martensite 2nd edn. (Beijing: Science Press) p. 64 (in Chinese)
[19] Oikawa K, Omori T, Kainuma R and Ishida K 2004 J. Magn. Magn. Mater. 272--276 2043
[1] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[2] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[3] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[4] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[5] Elastocaloric effect and mechanical behavior for NiTi shape memory alloys
Min Zhou(周敏), Yu-Shuang Li(李玉霜), Chen Zhang(张晨), Lai-Feng Li(李来风). Chin. Phys. B, 2018, 27(10): 106501.
[6] Large elastocaloric effect in Ti-Ni shape memory alloy below austenite finish temperature
Xiao-Hua Luo(罗小华), Wei-Jun Ren(任卫军), Wei Jin(金伟), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2017, 26(3): 036501.
[7] Room temperature NO2-sensing properties of hexagonal tungsten oxide nanorods
Yaqiao Wu(武雅乔), Ming Hu(胡明), Yuming Tian(田玉明). Chin. Phys. B, 2017, 26(2): 020701.
[8] Effect of Sb-doping on martensitic transformation and magnetocaloric effect in Mn-rich Mn50Ni40Sn10-xSbx (x=1, 2, 3, and 4) alloys
Ishfaq Ahmad Shah, Najam ul Hassan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Guizhou Xu(徐桂舟), Feng Xu(徐锋). Chin. Phys. B, 2017, 26(1): 017501.
[9] Magnetic and mechanical properties of Ni–Mn–Ga/Fe–Ga ferromagnetic shape memory composite
Tan Chang-Long (谭昌龙), Zhang Kun (张琨), Tian Xiao-Hua (田晓华), Cai Wei (蔡伟). Chin. Phys. B, 2015, 24(5): 057502.
[10] Electronic structures and magnetisms of the Co2TiSb1-xSnx (x=0, 0.25, 0.5) Heusler alloys: A theoretical study of the shape-memory behavior
Wang Li-Ying (王立英), Dai Xue-Fang (代学芳), Wang Xiao-Tian (王啸天), Lin Ting-Ting (林婷婷), Chen Lei (陈磊), Liu Ran (刘然), Cui Yu-Ting (崔玉亭), Liu Guo-Dong (刘国栋). Chin. Phys. B, 2015, 24(12): 126201.
[11] Evolution of magnetic domain structure of martensite in Ni-Mn-Ga films under the interplay of the temperature and magnetic field
Xie Ren (谢忍), Wei Jun (韦俊), Liu Zhong-Wu (刘仲武), Tang Yan-Mei (唐妍梅), Tang Tao (唐涛), Tang Shao-Long (唐少龙), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(6): 068103.
[12] Relation between martensitic transformation temperature range and lattice distortion ratio of NiMnGaCoCu Heusler alloys
Wei Jun (韦俊), Xie Ren (谢忍), Chen Le-Yi (陈乐易), Tang Yan-Mei (唐研梅), Xu Lian-Qiang (许连强), Tang Shao-Long (唐少龙), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(4): 048107.
[13] Pressure effects on magnetic properties and martensitic transformation of Ni–Mn–Sn magnetic shape memory alloys
Zhang Ya-Zhuo (张雅卓), Cao Jia-Mu (曹伽牧), Tan Chang-Long (谭昌龙), Cao Yi-Jiang (曹一江), Cai Wei (蔡伟). Chin. Phys. B, 2014, 23(3): 037504.
[14] Luminescence properties of ZnS:Cu, Eu semiconductor nanocrystals synthesized by a hydrothermal process
Xin Mei (新梅), Hu Li-Zhong (胡礼中). Chin. Phys. B, 2013, 22(8): 087804.
[15] Effects of Cu on the martensitic transformation and magnetic properties of Mn50Ni40In10 alloy
Li Ge-Tian (李歌天), Liu Zhu-Hong (柳祝红), Meng Fan-Yan (孟凡研), Ma Xing-Qiao (马星桥), Wu Guang-Heng (吴光恒). Chin. Phys. B, 2013, 22(12): 126201.
No Suggested Reading articles found!