Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 020305    DOI: 10.1088/1674-1056/20/2/020305
GENERAL Prev   Next  

Distributed quantum computation with superconducting qubit via LC circuit using dressed states

Cao Shuaia, Fang Mao-Fab, Xiao Xingb, Li Yan-Lingb, Wu Chaoc
a College of Sciences, South China Agricultural University, Guangzhou 510642, China; b Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081, China; c Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081, China; College of Sciences, South China Agricultural University, Guangzhou 510642, Chin
Abstract  A scheme is proposed where two superconducting qubits driven by a classical field interacting separately with two distant LC circuits connected by another LC circuit through mutual inductance, are used for implementing quantum gates. By using dressed states, quantum state transfer and quantum entangling gate can be implemented. With the help of the time-dependent electromagnetic field, any two dressed qubits can be selectively coupled to the data bus (the last LC circuit), then quantum state can be transferred from one dressed qubit to another and multi-mode entangled state can also be formed. As a result, the promising perspectives for quantum information processing of mesoscopic superconducting qubits are obtained and the distributed and scalable quantum computation can be implemented in this scheme.
Keywords:  quantum state transfer      quantum entangling gate      superconducting qubit  
Received:  03 October 2009      Revised:  05 February 2010      Published:  15 February 2011
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  05.60.Gg (Quantum transport)  
  74.50.+r (Tunneling phenomena; Josephson effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074072), the Natural Science Foundation of Hunan Province of China (Grant Nos. 07JJ3013 and 07JJ5003), and the Science Foundation of the Education Bureau of Hunan Province of China (Grant No. 06A038).

Cite this article: 

Wu Chao, Fang Mao-Fa, Xiao Xing, Li Yan-Ling, Cao Shuai Distributed quantum computation with superconducting qubit via LC circuit using dressed states 2011 Chin. Phys. B 20 020305

[1] Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 1999 Phys. Rev. Lett. 83 5166
[2] Leibfried D, DeMarco B, Meyer V, Lucas D, Barrett M, Britton J, Itano W M, Jelenkovic B, Langer C, Rosenband T and Wineland D J 2003 Nature 422 412
[3] Gershenfeld N A and Chuang I L 1997 Science 275 350
[4] Serafini Alessio, Mancini Stefano and Bose Sougato 2006 Phys. Rev. Lett. 96 010503
[5] Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
[6] Yang Z B, Wu H Z, Su W J and Zheng S B 2009 Phys. Rev. A 80 012305
[7] Johansson J, Saito S, Meno T, Nakano H, Ueda M, Semba K and Takayanagi H 2006 Phys. Rev. Lett. 96 127006
[8] Rigetti C, Blais A and Devoret M 2005 Phys. Rev. Lett. 94 240502
[9] Liu Y X, Wei L F, Tsai J S and Nori 2006 Phys. Rev. Lett. 96 067003
[10] Liu Y X, Sun C P and Nori 2006 Phys. Rev. A 74 05232
[11] Ma S Z and Chen M F 2009 Chin. Phys. B 18 3247
[12] Zheng X J, Luo Y M and Cai J W 2009 Chin. Phys. B 18 1352
[13] Zheng S B 2009 Chin. Phys. B 18 3453 endfootnotesize
[1] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[2] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[3] Manipulation of superconducting qubit with direct digital synthesis
Zhi-Yuan Li(李志远), Hai-Feng Yu(于海峰), Xin-Sheng Tan(谭新生), Shi-Ping Zhao(赵士平), Yang Yu(于扬). Chin. Phys. B, 2019, 28(9): 098505.
[4] Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit
Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜). Chin. Phys. B, 2019, 28(6): 060201.
[5] Nb-based Josephson parametric amplifier for superconducting qubit measurement
Fei-Fan Su(宿非凡), Zi-Ting Wang(王子婷), Hui-Kai Xu(徐晖凯), Shou-Kuan Zhao(赵寿宽), Hai-Sheng Yan(严海生), Zhao-Hua Yang(杨钊华), Ye Tian(田野), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2019, 28(11): 110303.
[6] Cavity-induced ATS effect on a superconducting Xmon qubit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Jianghao Ding(丁江浩), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Yanjun Liu(刘彦军), Zhongcheng Xiang(相忠诚), Jie Li(李洁), Yirong Jin(金贻荣), Yuxi Liu(刘玉玺), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(8): 084202.
[7] Solid-state quantum computation station
Fanming Qu(屈凡明), Zhongqing Ji(姬忠庆), Ye Tian(田野), Shiping Zhao(赵士平). Chin. Phys. B, 2018, 27(7): 070301.
[8] Demonstration of superadiabatic population transfer in superconducting qubit
Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 063202.
[9] Quantum state transfer via a hybrid solid-optomechanical interface
Pei Pei(裴培), He-Fei Huang(黄鹤飞), Yan-Qing Guo(郭彦青), Xing-Yuan Zhang(张兴远), Jia-Feng Dai(戴佳峰). Chin. Phys. B, 2018, 27(2): 024203.
[10] Superconducting quantum bits
Wei-Yang Liu(刘伟洋), Dong-Ning Zheng(郑东宁), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2018, 27(2): 027401.
[11] Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅). Chin. Phys. B, 2018, 27(12): 120302.
[12] Invariants-based shortcuts for fast generating Greenberger—Horne—Zeilinger state among three superconducting qubits
Jing Xu(徐晶), Lin Yu(于琳), Jin-Lei Wu(吴金雷), Xin Ji(计新). Chin. Phys. B, 2017, 26(9): 090301.
[13] Bridge-free fabrication process for Al/AlOx/Al Josephson junctions
Ke Zhang(张珂), Meng-Meng Li(李蒙蒙), Qiang Liu(刘强), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2017, 26(7): 078501.
[14] Fast generating W state of three superconducting qubits via Lewis-Riesenfeld invariants
Lin Yu(于琳), Jing Xu(徐晶), Jin-Lei Wu(吴金雷), Xin Ji(计新). Chin. Phys. B, 2017, 26(6): 060306.
[15] Fabrication of Al/AlOx/Al junctions using pre-exposure technique at 30-keV e-beam voltage
Dong Lan(兰栋), Guangming Xue(薛光明), Qiang Liu(刘强), Xinsheng Tan(谭新生), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2016, 25(8): 088501.
No Suggested Reading articles found!