Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 127203    DOI: 10.1088/1674-1056/20/12/127203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Persistent current in a magnetized Rashba ring

Zhang Lin(张林)a)b)† and Wang Jun(汪军)a)‡
a Department of Physics, Southeast University, Nanjing 210096, China; b Department of Applied Physics, College of Science, Nanjing Forestry University, Nanjing 210037, China
Abstract  We theoretically study the persistent currents flowing in a Rashba quantum ring subjected to the Rashba spin-orbit interaction. By introducing uniform or nonuniform magnetization into the ring, we find that a nonzero persistent charge current circulates in the ring, which stems from the original equilibrium spin current due to the Rashba spin-orbit interaction. Because of broken time reversal symmetry, the two oppositely flowing spin-up and spin-down charge currents of the equilibrium spin current are no longer equal, and so a net persistent charge current can flow in the system. It is also found that the persistent current can be modulated by the Fermi energy, the Rashba spin-orbit interaction strength and the magnetization in the ring. Moreover, the magnetization perpendicular to the ring plane can optimize the current. The persistent current flowing in the ring is a manifestation of the nonzero equilibrium spin current existing in the ring.
Keywords:  persistent current      equilibrium spin current      Rashba ring      magnetization  
Received:  06 April 2011      Revised:  08 August 2011      Accepted manuscript online: 
PACS:  72.25.Dc (Spin polarized transport in semiconductors)  
  72.25.Mk (Spin transport through interfaces)  
  73.23.Ra (Persistent currents)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 110704032 and 110704033), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2010416), and the National Basic Research Development Program of China (Grant No. 2009CB945504).

Cite this article: 

Zhang Lin(张林) and Wang Jun(汪军) Persistent current in a magnetized Rashba ring 2011 Chin. Phys. B 20 127203

[1] Zütic I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[2] Awschalom D D and Flatté M E 2007 Nat. Phys. 3 153
[3] Awschalom D D, Loss D and Samarth N 2002 Semiconductor Spintronics and Quantum Computation (Berlin: Springer) p. 12
[4] Nikolić B K, Zêrbo L P and Souma S 2010 The Oxford Handbook on Nanoscience and Technology: Frontiers and Advances (Oxford: Oxford University Press) p. 814
[5] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[6] Sun Q F, Wang J and Guo H 2005 Phys. Rev. B 71 165310
[7] Koga T, Nitta J, Akazaki T and Takayanagi H 2002 Phys. Rev. Lett. 89 046801
[8] Matsuyama T, Kürsten R, Meiupbetaner C and Merkt U 2000 Phys. Rev. B 61 15588
[9] Giglberger S, Golub L E, Belkov V V, Danilov S N, Schuh D, Gerl C, Rohlfing F, Stahl J, Wegscheider W, Weiss D, Prettl W and Ganichev S D 2007 Phys. Rev. B 75 035327
[10] Bergsten T, Kobayashi T, Sekine Y and Nitta J 2006 Phys. Rev. Lett. 97 196803
[11] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[12] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and MacDonald A H 2004 Phys. Rev. Lett. 92 126603
[13] Murakami S, Nagaosa N and Zhang S C 2003 Science 301 1348
[14] Inoue J I, Bauer G E W and Molenkamp L W 2004 Phys. Rev. B 70 041303(R)
[15] Jiang Z F, Li R D, Zhang S C and Liu W M 2005 Phys. Rev. B bf72 045201
[16] Wang J, Chan K S and Xing D Y 2006 Phys. Rev. B 73 033316
[17] Xing Y, Sun Q F and Wang J 2006 Phys. Rev. B 73 205339
[18] Sinova J, Murakami S, Shen S Q and Choi M S 2006 Sol. Stat. Commun. 138 214
[19] Rashba E I 2003 Phys. Rev. B 68 241315(R)
[20] Sonin E B 2007 Phys. Rev. B 76 033306
[21] Sun Q F, Xie X C and Wang J 2007 Phys. Rev. Lett. 98 196801
[22] Wang J and Chan K S 2006 Phys. Rev. B 74 035342
[23] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
[24] Sih V, Myers R C, Kato Y K, Lau W H, Gossard A C and Awschalom D D 2005 Nat. Phys. 1 31
[25] Sih V, Lau W H, Myers R C, Horowitz V R, Gossard A C and Awschalom D D 2006 Phys. Rev. Lett. 97 096605
[26] Wunderlich J, Kaestner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 94 047204
[27] Valenzuela S O and Tinkham M 2006 Nature 442 176
[28] Saitoh E, Ueda M, Miyajima H and Tatara G 2006 Appl. Phys. Lett. 88 182509
[29] Kimura T, Otani Y, Sato T, Takahashi S and Maekawa S 2007 Phys. Rev. Lett. 98 156601
[30] Shi J, Zhang P, Xiao D and Niu Q 2006 Phys. Rev. Lett. 96 076604
[31] Luo Z H and Liang G D 2011 Acta Phys. Sin. 60 037303 (in Chinese)
[32] Xu N, Ding J W, Chen H B and Ma M M 2009 Chin. Phys. B 18 2030
[31] Büttiker M, Imry Y and Landauer R 1983 Phys. Lett. A 96 365
[32] Levy L P, Dolan G, Dunsmuir J and Bouchiat H 1990 Phys. Rev. Lett. 64 2074
[33] Meijer F E, Morpurgo A F and Klapwijk T M 2002 Phys. Rev. B 66 033107
[34] Splettstoesser J, Governale M and Zülicke U 2003 Phys. Rev. B 68 165341
[35] Souma S and Nikolić B K 2004 Phys. Rev. B 70 195346
[36] Jiang Z F and Li H 2008 Commun. Theor. Phys. 50 1453
[37] Lopez Sancho M P, Lopez Sancho J M and Rubio J 1984 J. Phys. F: Met. Phys. 14 1205
[1] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[2] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[3] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[4] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[5] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[6] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[7] In-plane current-induced magnetization reversal of Pd/CoZr/MgO magnetic multilayers
Jing Liu(刘婧), Caiyin You(游才印), Li Ma(马丽), Yun Li(李云), Ling Ma(马凌), and Na Tian(田娜). Chin. Phys. B, 2022, 31(12): 127502.
[8] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[9] Multiple modes of perpendicular magnetization switching scheme in single spin—orbit torque device
Tong-Xi Liu(刘桐汐), Zhao-Hao Wang(王昭昊), Min Wang(王旻), Chao Wang(王朝), Bi Wu(吴比), Wei-Qiang Liu(刘伟强), and Wei-Sheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(10): 107501.
[10] Role of compositional changes on thermal, magnetic, and mechanical properties of Fe-P-C-based amorphous alloys
Indah Raya, Supat Chupradit, Mustafa M Kadhim, Mustafa Z Mahmoud, Abduladheem Turki Jalil, Aravindhan Surendar, Sukaina Tuama Ghafel, Yasser Fakri Mustafa, and Alexander N Bochvar. Chin. Phys. B, 2022, 31(1): 016401.
[11] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[12] Magnetization relaxation of uniaxial anisotropic ferromagnetic particles with linear reaction dynamics driven by DC/AC magnetic field
Yu-Song Hu(胡玉松), Min Jiang(江敏), Tao Hong(洪涛), Zheng-Ming Tang(唐正明), and Ka-Ma Huang(黄卡玛). Chin. Phys. B, 2021, 30(9): 090202.
[13] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[14] Magnetostriction and spin reorientation in ferromagnetic Laves phase Pr(GaxFe1-x)1.9 compounds
Min-Yu Zeng(曾敏玉), Qing Tang(唐庆), Zhi-Wei Mei(梅志巍), Cai-Yan Lu(陆彩燕), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), and Ze-Ping Guo(郭泽平). Chin. Phys. B, 2021, 30(6): 067504.
[15] Electric-field-induced in-plane effective 90° magnetization rotation in Co2FeAl/PMN-PT structure
Cai Zhou(周偲), Dengyu Zhu(朱登玉), Fufu Liu(刘福福), Cunfang Feng(冯存芳), Mingfang Zhang(张铭芳), Lei Ding(丁磊), Mingyao Xu(许明耀), and Shengxiang Wang(汪胜祥). Chin. Phys. B, 2021, 30(5): 057504.
No Suggested Reading articles found!