Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 100307    DOI: 10.1088/1674-1056/20/10/100307
GENERAL Prev   Next  

Improving quantum state transfer in a general XY chain via the Dzyaloshinsky–Moriya interaction

Zhang Jiana, Li Qian-Shub, Shao Binc, Zou Jianc
a Department of Chemistry, School of Sciences, Beijing Institute of Technology, Beijing 100081, China; b Institute of Chemical Physics, Beijing Institute of Technology, Beijing 100081, China; c Key Laboratory of Cluster Science of Ministry of Education and Department of Physics, School of Sciences, Beijing Institute of Technology, Beijing 100081, China
Abstract  We study the state transfer of Bell states in a general XY spin chain using the Dzyaloshinsky-Moriya interaction. Two symmetries of fidelity with the anisotropy parameter are found. The maximum fidelity is shown to be significantly enhanced in cases of an odd number of sites. Enhancement of fidelity on a singlet state is greater than that on the other Bell states in such cases.
Keywords:  state transfer      XY spin chain      Dzyaloshinsky-Moriya interaction  
Received:  02 November 2010      Revised:  31 May 2011      Published:  15 October 2011
PACS:  03.67.Hk (Quantum communication)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075013 and 10974016).

Cite this article: 

Zhang Jian, Shao Bin, Zou Jian, Li Qian-Shu Improving quantum state transfer in a general XY chain via the Dzyaloshinsky–Moriya interaction 2011 Chin. Phys. B 20 100307

[1] Bose S 2003 Phys. Rev. Lett. 91 207901
[2] Albanese C, Christandl M, Datta N and Ekert A 2004 Phys. Rev. Lett. 93 230502
[3] Liu D and Zhang J F 2006 Chin. Phys. 15 272
[4] Shi T, Li Y, Song Z and Sun C P 2005 Phys. Rev. A 71 032309
[5] Osborne T J and Linden N 2004 Phys. Rev. A 69 052315
[6] Burgarth D and Bose S 2005 Phys. Rev. A 71 052315
[7] Verstraete F, Mart'hin-Delgado M A and Cirac J I 2004 Phys. Rev. Lett. 92 087201
[8] Fitzsimons J and Twamley J 2006 Phys. Rev. Lett. 97 090502
[9] He J, Chen Q, Ding L and Wan S 2008 Phys. Lett. A 372 185
[10] Kuznetsova E and Zenchuk A 2008 Phys. Lett. A 372 6134
[11] Wang Z M, Bishop C A, Byrd M S, Shao B and Zou J 2009 Phys. Rev. A 80 022330
[12] Bishop C A, Ou Y C, Wang Z M and Byrd M S 2010 Phys. Rev. A 81 042313
[13] Ma S S and Chen M F 2009 Chin. Phys. B 18 3247
[14] Deng H L and Fang X M 2008 Chin. Phys. B 17 702
[15] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
[16] Moriya T 1960 Phys. Rev. 120 91
[17] Maruyama K, Iitaka T and Nori F 2007 Phys. Rev. A 75 012325
[18] Salimi S, Ghavami B and Sorouri A 2010 arXiv: 1010.0084v1 [quant ph]
[19] Du L, Hou J M, Ding J Y, Zhang W X, Tian Z and Chen T T 2011 Chin. Phys. B 20 020306
[20] Wang L C, Yan J Y and Yi X X 2010 Chin. Phys. B 19 040512
[21] Lieb E, Schultz T and Mattis D 1961 Ann. Phys. (N.Y.) 16 407
[22] Pfeuty P 1970 Ann. Phys. (N.Y.) 57 79
[23] Barouch E, McCoy B M and Dresden M 1970 Phys. Rev. A 2 1075
[24] Barouch E and McCoy B M 1971 Phys. Rev. A 3 786
[1] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[2] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[3] Applicability of coupling strength estimation for linear chains of restricted access
He Feng(冯赫), Tian-Min Yan(阎天民), Yuhai Jiang(江玉海). Chin. Phys. B, 2020, 29(3): 030305.
[4] Quantum state transfer via a hybrid solid-optomechanical interface
Pei Pei(裴培), He-Fei Huang(黄鹤飞), Yan-Qing Guo(郭彦青), Xing-Yuan Zhang(张兴远), Jia-Feng Dai(戴佳峰). Chin. Phys. B, 2018, 27(2): 024203.
[5] Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅). Chin. Phys. B, 2018, 27(12): 120302.
[6] Quantum information transfer between topological and conventional charge qubits
Jun Li(栗军) and Yan Zou(邹艳). Chin. Phys. B, 2016, 25(2): 027302.
[7] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling, Chen Mei-Feng. Chin. Phys. B, 2015, 24(7): 070310.
[8] High-dimensional quantum state transfer in a noisy network environment
Qin Wei, Li Jun-Lin, Long Gui-Lu. Chin. Phys. B, 2015, 24(4): 040305.
[9] Distributed quantum computation with superconducting qubit via LC circuit using dressed states
Wu Chao, Fang Mao-Fa, Xiao Xing, Li Yan-Ling, Cao Shuai. Chin. Phys. B, 2011, 20(2): 020305.
[10] Long-distance quantum state transfer through cavity-assisted interaction
Li Yu-Ning, Mei Feng, Yu Ya-Fei, Zhang Zhi-Ming. Chin. Phys. B, 2011, 20(11): 110305.
[11] High entanglement generation and high fidelity quantum state transfer in a non-Markovian environment
Li Yan-Ling, Fang Mao-Fa. Chin. Phys. B, 2011, 20(10): 100312.
[12] Transferring an N-atom state between two distant cavities via an optical fiber
Ma Song-She, Chen Mei-Feng. Chin. Phys. B, 2009, 18(8): 3247-3250.
[13] Quantum communication in spin star configuration
Deng Hong-Liang, Fang Xi-Ming. Chin. Phys. B, 2008, 17(2): 702-709.
[14] Effect of disturbance in perfect state transfer
Liu Dan, Zhang Jing-Fu. Chin. Phys. B, 2006, 15(2): 272-275.
No Suggested Reading articles found!