Abstract This paper proposes a scheme for transferring an N-atom state between two distant cavities via an optical fiber. The scheme is based on adiabatic passage along a dark state. In the scheme, all the atoms are always in ground state, the field mode of the fiber remains in vacuum state, and the field mode of the cavities being excited can be negligible under certain conditions. Therefore, the scheme is very robust against decoherence. The successful probability of implementing the quantum state transfer increases with increasing number of atoms. Furthermore, the interaction time does not need to be accurately adjusted as long as the adiabaticity condition is fulfilled.
Received: 23 September 2008
Revised: 20 November 2008
Accepted manuscript online:
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.