Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 100201    DOI: 10.1088/1674-1056/20/10/100201
GENERAL   Next  

Determination of temperature distribution and control parameter in a two-dimensional parabolic inverse problem with overspecified data

Li Fu-Le(李福乐) and Zhang Hong-Qian(张洪谦)
College of Science and Information, Qingdao Agricultural University, Qingdao 266109, China
Abstract  In this paper, we present a new algorithm to solve a two-dimensional parabolic inverse problem with a source parameter, which appears in many physical phenomena. A linearized compact difference scheme for this problem is constructed using the finite difference method. The discretization accuracy is second-order in time and fourth-order in space. We obtain the unique solvability and present an alternating direction implicit algorithm to solve this difference scheme. The results of numerical experiments are presented to demonstrate the accuracy of this algorithm.
Keywords:  control parameter      temperature distribution      finite difference scheme      solvability  
Received:  13 July 2010      Revised:  23 May 2011      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Zz (Inverse problems)  
  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
Fund: Project supported by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2009AL012) and the Science and Technology Program of Education Bureau of Shandong Province, China (Grant No. J09LA12).

Cite this article: 

Li Fu-Le(李福乐) and Zhang Hong-Qian(张洪谦) Determination of temperature distribution and control parameter in a two-dimensional parabolic inverse problem with overspecified data 2011 Chin. Phys. B 20 100201

[1] Dehghan M 2002 Int. J. Eng. Sci. 40 433
[2] Xie Y X and Tang J S 2005 Chin. Phys. 14 1303
[3] Yang Y N, Yang B, Zhu J R, Lu J and Ni X W 2008 Chin. Phys. B 17 1318
[4] Yao X H, Han Q and Xin H 2008 Acta Phys. Sin. 57 329 (in Chinese)
[5] Liu D, Wang F, Huang Q X, Yan J H, Chi Y and Cen K F 2008 Acta Phys. Sin. 57 4812 (in Chinese)
[6] Prilepko A I and Orlovskii D G 1985 J. Differential Equations 21 119
[7] Prilepko A I and Soloev V V 1987 Differential Equations 23 136
[8] Rundell W 1980 Appl. Anal. 10 231
[9] Wang S 1992 Mod. Devel. Numer. Simul. Flow and Heat Transfer 194 11
[10] Wang S and Lin Y 1989 Inverse Problems 5 631
[11] Cannon J R, Lin Y L and Xu S 1994 Inverse Problems 10 227
[12] Dehghan M 2003 Appl. Math. Comput. 135 491
[13] Dehghan M 2003 Appl. Math. Comput. 136 333
[14] Ye C R and Sun Z Z 2007 Appl. Math. Comput. 188 214
[15] Ye C R and Sun Z Z 2009 Appl. Math. Modell. 33 1521
[16] Ma L M and Wu Z M 2010 Chin. Phys. B 19 010201
[17] Daoud D S and Subasi D 2005 Appl. Math. Comput. 166 584
[18] Dehghan M 2001 Math. Prob. Eng. 7 283
[19] Sun Z Z 2005 Numerical Solution for Partial Differential Equations (Beijing: Science Press) p. 176 (in Chinese)
[1] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[2] Flow characteristics of supersonic gas passing through a circular micro-channel under different inflow conditions
Guang-Ming Guo(郭广明), Qin Luo(罗琴), Lin Zhu(朱林), Yi-Xiang Bian(边义祥). Chin. Phys. B, 2019, 28(6): 064702.
[3] Compact finite difference schemes for the backward fractional Feynman-Kac equation with fractional substantial derivative
Jiahui Hu(胡嘉卉), Jungang Wang(王俊刚), Yufeng Nie(聂玉峰), Yanwei Luo(罗艳伟). Chin. Phys. B, 2019, 28(10): 100201.
[4] Thermal analysis of GaN-based laser diode mini-array
Jun-Jie Hu(胡俊杰), Shu-Ming Zhang(张书明), De-Yao Li(李德尧), Feng Zhang(张峰), Mei-Xin Feng(冯美鑫), Peng-Yan Wen(温鹏雁), Jian-Pin Liu(刘建平), Li-Qun Zhang(张立群), Hui Yang(杨辉). Chin. Phys. B, 2018, 27(9): 094208.
[5] Electrical and thermal characterization of near-surface electrical discharge plasma actuation driven by radio frequency voltage at low pressure
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2018, 27(8): 085205.
[6] Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera
Guannan Liu(刘冠楠), Dong Liu(刘冬). Chin. Phys. B, 2018, 27(5): 054401.
[7] Efficient thermal analysis method for large scale compound semiconductor integrated circuits based on heterojunction bipolar transistor
Shi-Zheng Yang(杨施政), Hong-Liang Lv(吕红亮), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门), Bin Lu(芦宾), Si-Lu Yan(严思璐). Chin. Phys. B, 2018, 27(10): 108101.
[8] Simulation on effect of metal/graphene hybrid transparent electrode on characteristics of GaN light emitting diodes
Ming-Can Qian(钱明灿), Shu-Fang Zhang(张淑芳), Hai-Jun Luo(罗海军), Xing-Ming Long(龙兴明), Fang Wu(吴芳), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Fan-Ming Meng(孟凡明), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2017, 26(10): 104402.
[9] Two-dimensional thermal illusion device with arbitrary shape based on complementary media
Ge Xia(夏舸), Wei Kou(寇蔚), Li Yang(杨立), Yong-Cheng Du(杜永成). Chin. Phys. B, 2017, 26(10): 104403.
[10] Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure
Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云). Chin. Phys. B, 2017, 26(1): 015205.
[11] An approximation for the boundary optimal control problem of a heat equation defined in a variable domain
Yu Xin (于欣), Ren Zhi-Gang (任志刚), Xu Chao (许超). Chin. Phys. B, 2014, 23(4): 040201.
[12] An RLC interconnect analyzable crosstalk model considering self-heating effect
Zhu Zhang-Ming(朱樟明) and Liu Shu-Bin(刘术彬) . Chin. Phys. B, 2012, 21(2): 028401.
[13] Identifying the temperature distribution in a parabolice quation with overspecified data using a multiquadric quasi-interpolation method
Ma Li-Min(马利敏) and Wu Zong-Min(吴宗敏). Chin. Phys. B, 2010, 19(1): 010201.
[14] A novel analytical thermal model for multilevel nano-scale interconnects considering the via effect
Zhu Zhang-Ming(朱樟明),Li Ru(李儒), Hao Bao-Tian(郝报田), and Yang Yin-Tang(杨银堂) . Chin. Phys. B, 2009, 18(11): 4995-5000.
[15] Simulation study on reconstruction model of three-dimensional temperature distribution within visible range in furnace
Liu Dong(刘冬), Wang Fei(王飞), Huang Qun-Xing(黄群星), Yan Jian-Hua(严建华), Chi Yong(池涌), and Cen Ke-Fa(岑可法). Chin. Phys. B, 2008, 17(4): 1312-1317.
No Suggested Reading articles found!