Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 080509    DOI: 10.1088/1674-1056/19/8/080509
GENERAL Prev   Next  

Robust H control of piecewise-linear chaotic systems with random data loss

Zhang Jiana, Yu Yong-Binb, Zhang Hong-Binc
a School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; b School of Computer Science & Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; c School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  This paper studies the problem of robust H control of piecewise-linear chaotic systems with random data loss. The communication links between the plant and the controller are assumed to be imperfect (that is, data loss occurs intermittently, which appears typically in a network environmen20). The data loss is modelled as a random process which obeys a Bernoulli distribution. In the face of random data loss, a piecewise controller is designed to robustly stabilize the networked system in the sense of mean square and also achieve a prescribed H disturbance attenuation performance based on a piecewise-quadratic Lyapunov function. The required H controllers can be designed by solving a set of linear matrix inequalities (LMI19). Chua's system is provided to illustrate the usefulness and applicability of the developed theoretical results.
Keywords:  chaos      H control      piecewise-linear systems      piecewise-quadratic Lyapunov functions      random data loss     
Received:  18 October 2009      Published:  15 August 2010
PACS:  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
  84.30.Bv (Circuit theory)  
Fund: Project partially supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 60904004), the Key Youth Science and Technology Foundation of University of Electronic Science and Technology of China (Grant No. L08010201JX0720).

Cite this article: 

Zhang Hong-Bin, Yu Yong-Bin, Zhang Jian Robust H control of piecewise-linear chaotic systems with random data loss 2010 Chin. Phys. B 19 080509

[1] Imura J I and Van der Schaft A 2000 IEEE Trans. Automat. Control 45 1600
[2] Johansson M and Rantzer A 1998 IEEE Trans. Automat. Control 43 555
[3] Rantzer A and Johansson M 2000 IEEE Trans. Automat. Control 45 629
[4] Banks S P and Khathur S A 1989 Int. J. Control 50 667
[5] Cuzzola F A and Morari M 2002 Int. J. Control 75 1293
[6] Rodrigues L and Boukas E K 2006 Automatica bf42 1245
[7] Tiwari P Y, Mulder E F and Kothare M V 2007 IEEE Trans. Automat. Control 52 2341
[8] Grieder P, Kvasnica M, Baoti M and Morari M 2005 Automatica 41 1683
[9] Chua L O and Deng A 1986 IEEE Trans. Circuits Syst. 33 511
[10] Chua L O and Ying R 1983 IEEE Trans. Circuits Syst. 30 125
[11] Feng G 2002 IEEE Trans. CAS 49 224
[12] Azuma S, Yanagisawa E and Imura J 2008 IEEE Trans. Automat. Control 53 139
[13] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[14] Yu Y B, Bao J B, Zhang H B, Zhong Q S, Liao X F and Yu J B 2008 Chin. Phys. B 17 2377
[15] Yu Y B, Zhong Q S, Liao X F and Yu J B 2008 wxChin. Phys. B17 842
[16] Li D and Zheng Z G 2008 Chin. Phys. B 17 4009
[17] Zhang H B, Li C G, Chen G R and Gao X 2005 Int. J. Mod. Phys. C 16 815
[18] Zhang H B, Liao X F and Yu J B 2005 Chaos, Solotions and Fractals 26 835
[19] Zhang J, Zhang H B, Li C G and Yu J B 2004 Chaos, Solotions and Fractals 21 1183
[20] Yang D S, Yu W, Zhang H G and Zhao Y 2008 Chin. Phys. B 17 4056
[21] Chen S H and Kong C C 2009 Chin. Phys. B 18 91
[22] Fu J, Ma T D and Zhang H G 2008 Chin. Phys. B 17 4407
[23] Yang S P and Zhang R X 2008 Chin. Phys. B 17 4073
[24] Han B, Han M and Niu Z Q 2008 Acta Phys. Sin. 57 6824 (in Chinese)
[25] Zhang H B, Li C G, Zhang J, Liao X F and Yu J B 2005 Chaos, Solotions and Fractals 22 1053
[26] Li Y, Liao X F and Li C D 2006 Chin. Phys. bf15 2890
[27] Chen G and Dong X 1998 From Chaos to Order Methodologies, Perspectives and Applications, ser. Nonlinear Science (Singapore: World Scientific)
[28] Chua L O 1997 IEEE Trans. Circuits Syst. I 44 927
[29] Antsaklis P J and Baillieul J 2004 IEEE Trans. Automat. Control bf49 1421
[30] Goodwin G C, Haimovich H, Quevedo D E and Welsh J S 2004 IEEE Trans. Automat. Control 49 1427
[31] Nilsson J, Bernhardsson B and Wittenmark B 1998 wxAutomatica34 57
[32] Yue D, Han Q and Lam J 2005 wxAutomatica41 999
[33] Zhang L, Shi Y, Chen T and Huang B 2005 wxIEEE Trans. Automat. Control50 1177
[34] Gao H and Chen T 2008 wxIEEE Trans. Automat. Control52 2070
[35] Johansson M 2003 Piecewise Linear Control Systems (Berlin, Heidelberg: Singapore-Verlag)
[36] Zhang H B, Li C G and Liao X F 2006 IEEE Trans. SMC-B 36 685
[37] Zhang H B and Feng G 2008 IEEE Trans. SMC-B 38 1390
[38] Zhang H B 2008 IEEE Trans. Fuzzy Systems 14 1649
[39] Zhang H B, Li C G and Liao X F 2005 Int. J. Mod. Phys. B 19 4389
[40] Petersen I R 1987 Syst. Control Lett. 8 351
[41] Chua L O 1985 IEEE Trans. Circuits Syst. I 32 797
[1] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[2] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[3] Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator
Hong-Bo Yan(闫洪波), Hong Gao(高鸿), Gao-Wei Yang(杨高炜), Hong-Bo Hao(郝宏波), Yu Niu(牛禹), Pei Liu(刘霈). Chin. Phys. B, 2020, 29(2): 020504.
[4] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[5] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
[6] Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system
Hsincheng Yu(于心澄), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2019, 28(2): 020504.
[7] Design new chaotic maps based on dimension expansion
Abdulaziz O A Alamodi, Kehui Sun(孙克辉), Wei Ai(艾维), Chen Chen(陈晨), Dong Peng(彭冬). Chin. Phys. B, 2019, 28(2): 020503.
[8] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[9] Experimental investigation of the fluctuations in nonchaotic scattering in microwave billiards
Runzu Zhang(张润祖), Weihua Zhang(张为华), Barbara Dietz, Guozhi Chai(柴国志), Liang Huang(黄亮). Chin. Phys. B, 2019, 28(10): 100502.
[10] Dynamic characteristics in an external-cavity multi-quantum-well laser
Sen-Lin Yan(颜森林). Chin. Phys. B, 2018, 27(6): 060501.
[11] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[12] Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays
Li-Yuan Ma(马立媛), Jia-Liang Ji(季佳梁), Zong-Wei Xu(徐宗玮), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2018, 27(3): 030201.
[13] Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes-Vanstone elliptic curve cryptosystem
Zeyu Liu(刘泽宇), Tiecheng Xia(夏铁成), Jinbo Wang(王金波). Chin. Phys. B, 2018, 27(3): 030502.
[14] Heteroclinic cycles in a new class of four-dimensional discontinuous piecewise affine systems
Wenjing Xu(徐文静), Wei Xu(徐伟), Li Cai(蔡力). Chin. Phys. B, 2018, 27(11): 110201.
[15] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
No Suggested Reading articles found!