Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 030302    DOI: 10.1088/1674-1056/19/3/030302
GENERAL Prev   Next  

Decomposition of almost-Poisson structure of generalised Chaplygin's nonholonomic systems

Liu Chang(刘畅)a)b), Chang Peng(常鹏)a), Liu Shi-Xing(刘世兴)a), and Guo Yong-Xin(郭永新) a)
a College of Physics, Liaoning University, Shenyang 110036, China; b Department of Applied Mechanics, Beijing Institute of Technology, Beijing 100081, China
Abstract  This paper constructs an almost-Poisson structure for the non-self-adjoint dynamical systems, which can be decomposed into a sum of a Poisson bracket and the other almost-Poisson bracket. The necessary and sufficient condition for the decomposition of the almost-Poisson bracket to be two Poisson ones is obtained. As an application, the almost-Poisson structure for generalised Chaplygin's systems is discussed in the framework of the decomposition theory. It proves that the almost-Poisson bracket for the systems can be decomposed into the sum of a canonical Poisson bracket and another two noncanonical Poisson brackets in some special cases, which is useful for integrating the equations of motion.
Keywords:  almost-Poisson structure      non-self-adjointness      Jacobi identity      generalised Chaplygin's nonholonomic systems  
Received:  03 February 2009      Revised:  16 May 2009      Accepted manuscript online: 
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~10872084 and 10472040), the Outstanding Young Talents Training Fund of Liaoning Province, China (Grant No.~3040005) and the Research Program of Higher Education of Liaoning Province, China (Grant No.~2008S098).

Cite this article: 

Liu Chang(刘畅), Chang Peng(常鹏), Liu Shi-Xing(刘世兴), and Guo Yong-Xin(郭永新) Decomposition of almost-Poisson structure of generalised Chaplygin's nonholonomic systems 2010 Chin. Phys. B 19 030302

[1] Santilli R M 1978 Foundations of Theoretical Mechanics I (New York: Springer-Verlag)
[2] Marsden J E and Ratiu T S 1999 Introduction to Mechanics andSymmetry 2nd Edition (NewYork: Springer-Verlag)
[3] Guo Y X, Liu S X, Liu C, Luo S K and Wang Y 2007 J. Math. Phys. 48 082901
[4] Bloch A M, Baillieul J, Crouch P and Marsden J E 2003 Nonholonomic Mechanics andControl. (London: Springer)
[5] Koon W S and Marsden J E 1997 Rep. Math. Phys. 40 21
[6] Sniatycki J 2001 Rep. Math. Phys. 48 235
[7] Ramos A 2004 arXiv: math-ph/0401054v1
[8] Kupka I and Oliva W M 2001 J. Diff. Equations 169 169
[9] Guo Y X, Luo S K and Mei F X 2004 Adv. Mech. 34 477
[10] Qiu J J 1992 Mechanical and Electrical Analytical Dynamics (Beijing: SciencePress) (in Chinese)
[11] Shapiro I L 2002 Phys. Rep. 357 113
[12] Hehl F W, McCrea J D and Mielke E W 1995 Phys. Rep. 258 1
[13] Hammond R T 2002 Rep. Prog. Phys. 65 599
[14] Guo Y X, Wang Y, Chee G Y and Mei F X 2005 J. Math. Phys. 46 062902
[15] Guo Y X, Song Y B, Zhang X B and Chi D P 2003 Chin. Phys. Lett. 20 1192
[16] Maulbetsch C and Shabonov S V 1999 J. Phys. A Math. Gen. 32 5355
[17] Zecca A 2002 Int. J. Theor. Phys. 41 421
[18] Fiziev P and Kleinert H 1995 arXiv:hep-th/9503075v1
[19] Cantrijn F, de León M and de Diego D M 1999 Nonlinearity 12 721
[20] Cantrijn F, de León M, Marrero J C and de Diego D M 2000 Nonlinearity 13 1379
[21] Kozlov V V 2002 Reg. Chaot. Dyn. 7 161
[22] Shashikanth B N, Sheshmani A, Kelly S D and Marsden J E 2008Theor.Comput. Fluid Dynam. 22 37
[23] Guo Y X, Liu C, Liu S X and Chang P 2009 Sci. China Ser. E -Tech. Sci. 52 761/arXiv:Math-SG/0810.3731
[24] Koon W S and Marsden J E 1998 Rep. Math. Phys. 42 101
[25] Cortés J 2002 Geometric, Control and Numerical Aspects ofNonholonomic Systems (Berlin: Springer)
[26] Mei F X and Xu X J 2005 Acta Phys. Sin. 54 3975 (in Chinese)
[1] Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
Beibei Zhu(朱贝贝), Lun Ji(纪伦), Aiqing Zhu(祝爱卿), and Yifa Tang(唐贻发). Chin. Phys. B, 2023, 32(2): 020204.
[2] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[3] On superintegrable systems with a position-dependent mass in polar-like coordinates
Hai Zhang(章海)†. Chin. Phys. B, 2020, 29(10): 100201.
[4] Quasi-canonicalization for linear homogeneous nonholonomic systems
Yong Wang(王勇), Jin-Chao Cui(崔金超), Ju Chen(陈菊), Yong-Xin Guo(郭永新). Chin. Phys. B, 2020, 29(6): 064501.
[5] Discrete symmetrical perturbation and variational algorithm of disturbed Lagrangian systems
Li-Li Xia(夏丽莉), Xin-Sheng Ge(戈新生), Li-Qun Chen(陈立群). Chin. Phys. B, 2019, 28(3): 030201.
[6] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[7] Fully nonlinear (2+1)-dimensional displacement shallow water wave equation
Feng Wu(吴锋), Zheng Yao(姚征), Wanxie Zhong(钟万勰). Chin. Phys. B, 2017, 26(5): 054501.
[8] Methods of reduction for Lagrange systems on time scaleswith nabla derivatives
Shi-Xin Jin(金世欣), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(1): 014501.
[9] Stability analysis of a simple rheonomic nonholonomic constrained system
Chang Liu(刘畅), Shi-Xing Liu(刘世兴), Feng-Xing Mei(梅凤翔). Chin. Phys. B, 2016, 25(12): 124501.
[10] Generalized Birkhoffian representation of nonholonomic systems and its discrete variational algorithm
Shixing Liu(刘世兴), Chang Liu(刘畅), Wei Hua(花巍), Yongxin Guo(郭永新). Chin. Phys. B, 2016, 25(11): 114501.
[11] An application of a combined gradient system to stabilize a mechanical system
Xiang-Wei Chen(陈向炜), Ye Zhang(张晔), Feng-Xiang Mei(梅凤翔). Chin. Phys. B, 2016, 25(10): 100201.
[12] Birkhoffian symplectic algorithms derived from Hamiltonian symplectic algorithms
Xin-Lei Kong(孔新雷), Hui-Bin Wu(吴惠彬), Feng-Xiang Mei(梅凤翔). Chin. Phys. B, 2016, 25(1): 010203.
[13] Two kinds of generalized gradient representationsfor holonomic mechanical systems
Feng-Xiang Mei(梅凤翔) and Hui-Bin Wu(吴惠彬). Chin. Phys. B, 2016, 25(1): 014502.
[14] Dynamics of two polarized nanoparticles
Duan Xiao-Yong (段晓勇), Wang Zhi-Guo (王治国). Chin. Phys. B, 2015, 24(11): 118106.
[15] Skew-gradient representation of generalized Birkhoffian system
Mei Feng-Xiang (梅凤翔), Wu Hui-Bin (吴惠彬). Chin. Phys. B, 2015, 24(10): 104502.
No Suggested Reading articles found!