Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 014501    DOI: 10.1088/1674-1056/26/1/014501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Methods of reduction for Lagrange systems on time scaleswith nabla derivatives

Shi-Xin Jin(金世欣)1, Yi Zhang(张毅)1,2
1. School of Science, Nanjing University of Science and Technology, Nanjing 210009, China;
2. College of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
Abstract  The Routh and Whittaker methods of reduction for Lagrange system on time scales with nabla derivatives are studied. The equations of motion for Lagrange system on time scales are established, and their cyclic integrals and generalized energy integrals are given. The Routh functions and Whittaker functions of Lagrange system are constructed, and the order of differential equations of motion for the system are reduced by using the cyclic integrals or the generalized energy integrals with nabla derivatives. The results show that the reduced Routh equations and Whittaker equations hold the form of Lagrnage equations with nabla derivatives. Finally, two examples are given to illustrate the application of the results.
Keywords:  reduction of dynamical system      cyclic integral      energy integral      time scales  
Received:  16 August 2016      Revised:  12 December 2016      Accepted manuscript online: 
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  89.75.Da (Systems obeying scaling laws)  
  71.10.Pm (Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11572212 and 11272227) and the Innovation Program for Graduate Student of Jiangsu Province, China (Grant No. KYLX16-0414).
Corresponding Authors:  Yi Zhang     E-mail:  zhy@mail.usts.edu.cn

Cite this article: 

Shi-Xin Jin(金世欣), Yi Zhang(张毅) Methods of reduction for Lagrange systems on time scaleswith nabla derivatives 2017 Chin. Phys. B 26 014501

[1] Ahlbrand D, Bohner M and Ridenhour J 2000 J. Math. Anal. Appl. 250 561
[2] Agarwal R, Bohner M and O'Regan D 2004 J. Comput. Appl. Math. 141 1
[3] Bohner M and Guseinov G Sh 2006 Comput. Math. Appl. 54 45
[4] Atici F M, Biles D C and Lebedinsky A 2006 Math. Comput. Model. 43 718
[5] Abdeljawad T, Jarad F and Baleanu D 2009 Adv. Differ. Eqs. 30 840386
[6] Bartosiewicz Z, Martins N and Torres D F M 2011 Eur. J. Control 17 9
[7] Hilger S 1988 Ein Mkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten (PhD thesis, Universit at Würzburg)
[8] Hilger S 1990 Res. Math. 18 18
[9] Hilger S 1997 Nonlinear Anal.:Theor. Methods Appl. 30 2683
[10] Bohner M and Peterson A 2001 Dynamic Equations on Time Scale:An Introduction with Applications (Birkhäuser Boston)
[11] Bohner M 2004 Dyn. Sys. Appl. 13 339
[12] Martins N and Torres D F M 2009 Nonlinear Anal. 71 e763
[13] Torres D F M 2010 Int. J. Simul. Multi. Des. Optim. 4 11
[14] Bartosiewicz Z and Torres D F M 2008 J. Math. Anal. Appl. 342 1220
[15] Martins N and Torres D F M 2010 Appl. Math. Lett. 23 1432
[16] Malinowska A B and Ammi M R S 2014 Int. J. Differ. Eqs. 9 87
[17] Cai P P, Fu J L and Guo Y X 2013 Sci. China G:Phys. Mech. Astron. 56 1017
[18] Song C J and Zhang Y 2015 J. Math. Phys. 56 102701
[19] Herzallah M A E, Muslih S I and Baleanu D 2011 Nonlinear Dyn. 66 549
[20] Cruz A M C B Da, Martins N and Torres D F M 2013 Appl. Math. Lett. 26 264
[21] Bartosiewicz Z, Martins N and Torres D F M 2010 Eur. J. Control 17 9
[22] Malinowska A B and Martins N 2014 Abstr. Appl. Anal. 2013 2013
[23] Routh E J 1877 A Treatise on the Stability of Motion (London:Macmillima)
[24] Whittaker E T 1904 A Treatise on the Analytical Dynamics of Particles any Rigid Bodies (Cambridge:Cambridge University Press)
[25] Liu D 1988 Chin. Sci. Bull. 33 004
[26] Luo S K 2003 Chin. Phys. 12 140
[27] Luo S K 2002 Chin. Phys. 11 1097
[28] Luo S K, Huang F J and Lu Y B 2004 Commun. Theor. Phys. 42 817
[29] Zhang Y 2008 Acta Phys. Sin. 57 5374(in Chinese)
[30] Zhang Y 2008 Chin. Phys. B 17 1674
[31] Guo H Y, Li Y Q and Wu K 2002 Commun. Theor. Phys. 37 1
[32] Fu J L, Chen L Q and Chen B Y 2009 Sci. China Ser. G:Phys. Mech. Astron. 39 1320(in Chinese)
[33] Mei F X 2013 Analytical Mechanics (Beijing:Beijing Institute of Technology Press) (in Chinese)
[34] Mei F X and Wu H B 2009 Dynamics of Constrained Mechanical Systems (Beijing:Beijjing Institute of Technology Press)
[1] Generalized Chaplygin equations for nonholonomic systems on time scales
Shi-Xin Jin(金世欣), Yi Zhang(张毅). Chin. Phys. B, 2018, 27(2): 020502.
[2] Bursting oscillations as well as the bifurcation mechanism in a non-smooth chaotic geomagnetic field model
Ran Zhang(张冉), Miao Peng(彭淼), Zhengdi Zhang(张正娣), Qinsheng Bi(毕勤胜). Chin. Phys. B, 2018, 27(11): 110501.
[3] Bursting oscillations in a hydro-turbine governing system with two time scales
Qing-Shuang Han(韩青爽), Di-Yi Chen(陈帝伊), Hao Zhang(张浩). Chin. Phys. B, 2017, 26(12): 128202.
[4] Fractional cyclic integrals and Routh equations of fractional Lagrange system with combined Caputo derivatives
Wang Lin-Li (王琳莉), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(12): 124501.
[5] Routh method of reduction for Birkhoffian systems in the event space
Zhang Yi (张毅). Chin. Phys. B, 2008, 17(12): 4365-4368.
[6] Cyclic integrals and reduction of rotational relativistic Birkhoffian system
Luo Shao-Kai (罗绍凯). Chin. Phys. B, 2003, 12(2): 140-143.
[7] Generalized energy integral and reduction of rotational relativistic Birkhoffian system
Luo Shao-Kai (罗绍凯). Chin. Phys. B, 2002, 11(11): 1097-1100.
No Suggested Reading articles found!