Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 030301    DOI: 10.1088/1674-1056/19/3/030301
GENERAL Prev   Next  

Synchronisation and general dynamic symmetry of a vibrating system with two exciters rotating in opposite directions

Zhao Chun-Yu(赵春雨), Zhang Yi-Min(张义民), and Wen Bang-Chun(闻邦椿)
School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China
Abstract  We derive the non-dimensional coupling equation of two exciters, including inertia coupling, stiffness coupling and load coupling. The concept of general dynamic symmetry is proposed to physically explain the synchronisation of the two exciters, which stems from the load coupling that produces the torque of general dynamic symmetry to force the phase difference between the two exciters close to the angle of general dynamic symmetry. The condition of implementing synchronisation is that the torque of general dynamic symmetry is greater than the asymmetric torque of the two motors. A general Lyapunov function is constructed to derive the stability condition of synchronisation that the non-dimensional inertia coupling matrix is positive definite and all its elements are positive. Numeric results show that the structure of the vibrating system can guarantee the stability of synchronisation of the two exciters, and that the greater the distances between the installation positions of the two exciters and the mass centre of the vibrating system are, the stronger the ability of general dynamic symmetry is.
Keywords:  synchronisation      vibrating system      symmetry      stability  
Received:  20 November 2008      Revised:  15 October 2009      Accepted manuscript online: 
PACS:  45.20.da (Forces and torques)  
  45.80.+r (Control of mechanical systems)  
  45.20.dc (Rotational dynamics)  
  02.30.Yy (Control theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~50535010 and 10702014), the Project of Liaoning Province Science (Grant No. 2008S095) and the National High Technology Research and Development Program of China (Grant No.~2007AA04Z442).

Cite this article: 

Zhao Chun-Yu(赵春雨), Zhang Yi-Min(张义民), and Wen Bang-Chun(闻邦椿) Synchronisation and general dynamic symmetry of a vibrating system with two exciters rotating in opposite directions 2010 Chin. Phys. B 19 030301

[1] Senator M 2006 J. Sound Vib . 291 566
[2] Zhang Z, Fu Z Q and Yan G 2009 Chin. Phys. B 18 2209
[3] Huygens C 1673 Horologium Oscilatorium (Paris, France)
[4] van der Pol B 1920 Radio Rev. 1 701
[5] Rayleigh J 1945 Theory of Sound (New York: Dover)
[6] Kuramoto Y and Nishikawa I 1987 J. Stat. Phys. 49 569
[7] Strogate S H 2000 Physica D 143 1
[8] Ren Q and Zhao J 2007 Phys. Rev. E 76 016207
[9] Hong H, Chate H, Park H and Tang L H 2007 Phys. Rev. Lett. 99 184101
[10] Wang X, Lai Y and Lai C 2007 Phys. Rev. E 75 056205
[11] Wang J W, Chen A M, Zhang J J, Yuan Z J and Zhou T S 2009 Chin. Phys. B 18 1294
[12] Feng X Q and Shen K 2005 Chin. Phys. 14 1526
[13] Nijmeijer A 2001 Physica D 154 219
[14] Blekhman I I 1988 Synchronisation in Science and Technology (New York: ASME Press)
[15] Blekhman I I 1971 Synchronisation of Dynamical Systems (Moscow: Nauka) (in Russian)
[16] Wen B C, Zhao C Y, Su H P and Xong W L 2002 Vibrated Synchronisation andControlled Synchronisation (Beijing: Science Press) (inChinese)
[17] Xu X J, Qin M C and Mei F X 2005 Chin. Phys. 14 1287
[18] Li Y C, Jing H X, Xia L L, Wang J and Hou Q B 2007 Chin. Phys. 16 2154
[19] Xia L L, Li Y C, Hou Q B and Wang J 2006 Chin. Phys. 15 903
[20] Li A M, Jiang J H and Li Z P 2003 Chin. Phys. 12 467
[21] Wang P, Fang J H, Ding N and Zhang P Y 2006 Chin. Phys. 15 1403
[22] Zhao C Y, Zhu H T, Wang R Z and Wen B C 2009 Shock and Vib . 16 505
[23] Zhang X H and Zhang Q L 2007 Control Theory of Nonlinear Differential Algebraic System and Its Applications (Beijing: Science Press) (in Chinese)
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[3] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[4] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[5] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[6] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[7] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[8] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[9] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[10] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[11] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[12] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[13] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[14] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[15] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
No Suggested Reading articles found!