Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 024205    DOI: 10.1088/1674-1056/19/2/024205
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Propagation of phase-locked truncated Gaussian beam array in turbulent atmosphere

Zhou Pu(周朴), Liu Ze-Jin(刘泽金), Xu Xiao-Jun(许晓军), and Chu Xiu-Xiang(储修祥)
College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  Truncation manipulation is a simple but effective way to improve the intensity distribution properties of the phase-locked Gaussian beam array at the receiving plane. In this paper, the analytical expression for the propagation of the phase-locked truncated Gaussian beam array in a turbulent atmosphere is obtained based on the extended Huygens--Fresnel principle. Power in the diffraction-limited bucket is introduced as the beam quality factor to evaluate the influence of different truncation parameters. The dependence of optimal truncation ratio on the number of beamlets, the intensity of turbulence, propagation distance and laser wavelength is calculated and discussed. It is revealed that the optimal truncation ratio is larger for the laser array that contains more lasers, and the optimal truncation ratio will shift to a larger value with an increase in propagation distance and decrease in intensity of atmosphere turbulence. The optimal truncation ratio is independent of laser wavelength.
Keywords:  laser array      phase locking      truncation      propagation      turbulence  
Received:  30 March 2009      Revised:  23 July 2009      Accepted manuscript online: 
PACS:  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
  42.68.Bz (Atmospheric turbulence effects)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Fund: Project supported by the Innovation Foundation for Postgraduate of Hunan Province.

Cite this article: 

Zhou Pu(周朴), Liu Ze-Jin(刘泽金), Xu Xiao-Jun(许晓军), and Chu Xiu-Xiang(储修祥) Propagation of phase-locked truncated Gaussian beam array in turbulent atmosphere 2010 Chin. Phys. B 19 024205

[1] Fan T Y 2005 IEEE J. Sel. Top. Quantum Electron. 11 567
[2] Goodno G D, Komine H, McNaught S J, Weiss S B, Redmond S, Long W,Simpson R, Cheung E C, Howland D, Epp P, Weber M, McClellan M, Sollee J andInjeyan H 2006 Opt. Lett. 31 1247
[3] Anderegg J, Brosnan S, Cheung E, Epp P, Hammons D, Komine H, Weber Mand Wickham M 2006 Proc. SPIE. 6102 61020U-1
[4] Augst S J, Ranka J K, Fan T Y and Sanchez A 2007 J. Opt. Soc. Am. B 24 1707
[5] Goodno G D, Asman C P, Anderegg J, Brosnan S, Cheung E, Hammons D,Injeyan H, Komine H, Long W, McClellan M, McNaught S J, Redmond S, SimpsonR, Sollee J, Weber M, Weiss S and Wickham M 2007 IEEE J. Sel. Top. Quantum Electron.1 3 460
[6] Cheung E C, Ho J G, Goodno G D, Rice R R, Rothenberg J, Thielen P, WeberM and Wickham M Opt. Lett. 2008 3 3 354
[7] Xiao R, Hou J, Liu M and Jiang Z F 2008 Opt. Express 16 2015
[8] He B, Lou Q H, Zhou J, Dong J X, Wei Y R, Xue D, Qi Y F, Su Z P, Li L Band Zhang F P 2006 Opt. Express 142721
[9] Cai Y J, Chen Y, Eyyuboglu H T and Baykal Y 2007 Appl. Phys. B 88 467
[10] Eyyuboglu H T, Baykal Y and Cai Y J 2008 Appl. Phys. B 91 265
[11] Ji X L and Li X Q 2008 Acta Phys. Sin. 57 7674 (in Chinese)
[12] Ji X L, Zhang E T and Lü B D 2007 J. Opt. Soc. Am. B 25 825
[13] Chu X X, Liu Z J and Wu Y 2008 J. Opt. Soc. Am. A 25 74
[14] Zhang E T, Ji X L and Lü B D 2007 Chin. Phys. 16 571
[15] Lü B D and Ma H 2000 Appl. Opt. 39 1279
[16] Brosnan S J, Wichham M G and Komine H US patent 72283702
[17] Khajavikhan M and Leger J R 2008 Conference on Lasers and Electro-Optics (CA, USA May 2008) p CWB1
[18] Christensen S and Koski O 2007 Conference on Lasers and Electro-Optics(Baltimore, USA May 2007) p WC1
[19] Vorontsov M A and Lachinova S L 2008 J. Opt. Soc. Am. A 25 1949
[20] Zhou P, Wang X L, Ma Y X, Ma H T, Xu X and Liu Z J 2009 Chin. Phys. Lett. 26044206
[21] Zhang Y J 2005 Opt. Commun. 248 317
[22] Wen J J and Breazeale M A 1988 J. Acoust. Soc. Am. 8 3 1752
[23] Eyyuboglu H T and Baykal Y 2004 Opt. Express 12 4659
[24] Wang S C H and Plonus M A 1979 J. Opt. Soc. Am. 69 1297
[25] Gradshteyn I S and Ryzhik I M 1980 Tables of Integrals, Series and Products (New York: Academic Press)
[26] Stickley C M [http://www.darpa.mil/mto/programs/adhels/index.htm
[27] Goodno G D, Book L D and Rothenberg J E 2009 Proc. SPIE. 7195 71950Y-1
[1] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[2] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[3] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[4] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[5] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[6] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[7] Wave mode computing method using the step-split Padé parabolic equation
Chuan-Xiu Xu(徐传秀) and Guang-Ying Zheng(郑广赢). Chin. Phys. B, 2022, 31(9): 094301.
[8] Three-dimensional coupled-mode model and characteristics of low-frequency sound propagation in ocean waveguide with seamount topography
Ya-Xiao Mo(莫亚枭), Chao-Jin Zhang(张朝金), Li-Cheng Lu(鹿力成), and Sheng-Ming Guo(郭圣明). Chin. Phys. B, 2022, 31(8): 084301.
[9] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[10] Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
Yuhuai Zhang(张宇槐) and Jianjun Zhu(朱建军). Chin. Phys. B, 2022, 31(6): 060202.
[11] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[12] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[13] Correlation and trust mechanism-based rumor propagation model in complex social networks
Xian-Li Sun(孙先莉), You-Guo Wang(王友国), and Lin-Qing Cang(仓林青). Chin. Phys. B, 2022, 31(5): 050202.
[14] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[15] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
No Suggested Reading articles found!