Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 120508    DOI: 10.1088/1674-1056/19/12/120508
GENERAL Prev   Next  

Topological horseshoe in nonlinear Bloch system

Fan Qing-Ju(樊庆菊)a)b)†
Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430073, China; b Department of Statistics, School of Science, Wuhan University of Technology, Wuhan 430063, China
Abstract  This paper demonstrates rigorous chaotic dynamics in nonlinear Bloch system by virtue of topological horseshoe and numerical method. It considers a properly chosen cross section and the corresponding Poincaré map, and shows the existence of horseshoe in the Poincaré map. In this way, a rigorous verification of chaos in the nonlinear Bloch system is presented.
Keywords:  Bloch equation      chaos      topological horseshoe      Poincaré map   
Received:  08 March 2010      Revised:  24 May 2010      Accepted manuscript online: 
PACS:  02.30.Hq (Ordinary differential equations)  
  02.40.Pc (General topology)  
  02.60.Cb (Numerical simulation; solution of equations)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2010-1a-036).

Cite this article: 

Fan Qing-Ju(樊庆菊) Topological horseshoe in nonlinear Bloch system 2010 Chin. Phys. B 19 120508

[1] Liu C X, Xu Z and Yang T 2010 Acta Phys. Sin. 59 131 (in Chinese)
[2] Gao T G and Gu Q L 2009 Chin. Phys. B 18 84
[3] He H L and Wang G Y 2008 Chin. Phys. B 17 4014
[4] Abergel D 2002 Phys. Lett. A 302 17
[5] Ghosh D, Chowdhury A R and Saha P 2008 Commun. Nonlinear Sci. Numer. Simul. 13 1461
[6] Yang X S and Tang Y 2004 Chaos, Solitions & Fractals 19 841
[7] Yang X S 2004 Chaos, Solitons & Fractals 20 1149
[8] Yang X S, Li H M and Huang Y 2005 J. Phys. A: Math. Gen. 38 4175
[9] Yang X S 2009 Int. J. Bifur. Chaos 19 1127
[10] Yang X S, Yu Y G and Zhang S C 2003 Chaos, Solitons & Fractals 18 223
[11] Yang X S and Li Q D 2006 Chaos, Solitons & Fractals 27 25
[12] Li Q D 2008 Phys. Lett. A 372 2989
[13] Yang X S and Huang Y 2006 Chaos 16 033114
[14] Wiggins S 1990 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springe-Verlag) p. 420
[15] Robinson C 1995 Dynamical Systems: Stability, Symbolic Dynamics and Chaos (Boca Raton: CRC Press Inc.) p. 277
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[7] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[8] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!