Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 100504    DOI: 10.1088/1674-1056/19/10/100504
GENERAL Prev   Next  

Sliding mode control of a new chaotic system

Li Ming(李铭) and Liu Chong-Xin(刘崇新)
College of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  In this paper, a sliding mode controller (SMC) is designed to control a new dynamical system with canonical chaos characters. With the proposed SMC, the new chaotic system can be regulated to a fixed point in the state space. Simulation shows that the chattering phenomenon is greatly alleviated.
Keywords:  chaos      sliding mode control      chattering  
Received:  07 March 2010      Revised:  09 April 2010      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  

Cite this article: 

Li Ming(李铭) and Liu Chong-Xin(刘崇新) Sliding mode control of a new chaotic system 2010 Chin. Phys. B 19 100504

[1] Li X C, Xiao Y Z and Xu W 2008 Acta Phys. Sin. 57 4721 (in Chinese)
[2] Qiao X H and Bao B C 2009 Acta Phys. Sin. 58 8152 (in Chinese)
[3] Han X J, Jiang B and Bi Q S 2009 Acta Phys. Sin. 58 6006 (in Chinese)
[4] Wang Y N, Tan W and Duan F 2006 Chin. Phys. 15 89
[5] Wang X Y and Wang M J 2008 Acta Phys. Sin. 57 731 (in Chinese)
[6] Wang X Y, Nian F Z and Guo G 2009 Phys. Lett. A 373 1754
[7] Liu C X, Liu T, Liu L and Liu K 2004 Chaos, Solitons and Fractals 22 1031
[8] Yu D C, Wu A G and Yang C P 2005 Chin. Phys. 14 914
[9] Guo H J, Yin Y W and Wang H M 2008 Chin. Phys. B 17 1652
[10] Chen S H and Kong C C 2009 Chin. Phys. B 18 91
[11] Chang W D and Yan J J 2005 Chaos, Solitons and Fractals 26 167
[12] Wang X Y, Lin D and Wang Z J 2009 Mod. Phys. Lett. B 23 2021
[13] Wang X Y, Liu M, Wang M J and He Y J 2008 Int. J. Mod. Phys. B 22 2187
[14] Wang M J and Wang X Y 2009 Mod. Phys. Lett. B 23 1805
[15] Liu C X 2009 Chaos, Solitons and Fractals 39 1037 endfootnotesize
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[7] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[8] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[13] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!