Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 100304    DOI: 10.1088/1674-1056/19/10/100304
GENERAL Prev   Next  

Preliminary analysis of resonance effect by Helmholtz–Schrödinger method

Yan Er-Yan(闫二艳)a)b), Meng Fan-Bao(孟凡宝)a), Ma Hong-Ge(马弘舸)a), and Chen Chao-Yang(陈朝阳)a)
a Institute of Applied Electronics, China Academy Engineering Physics, P.O. Box 919-1017, Mianyang 621900, China; b Graduate School of China Academy Engineering Physics, Beijing 100088, China
Abstract  The Helmholtz–Schrödinger method is employed to study the electric field standing wave caused by coupling through a simple slot. There is a good agreement between the numerical results and the resonant conditions presented by the Helmholtz–Schrödinger method. Thus, it can be used in similar cases where the amplitude of the electric field is the important quantity or eigenfunctions of the Schrõdinger equation are needed for complicated quantum structures with hard wall boundary conditions.
Keywords:  Helmholtz–Schrödinger method      standing wave      resonance      coupling  
Received:  19 August 2009      Revised:  29 March 2010      Accepted manuscript online: 
PACS:  02.10.Ud (Linear algebra)  
  02.60.Cb (Numerical simulation; solution of equations)  
  03.65.Fd (Algebraic methods)  
  03.65.Ge (Solutions of wave equations: bound states)  

Cite this article: 

Yan Er-Yan(闫二艳), Meng Fan-Bao(孟凡宝), Ma Hong-Ge(马弘舸), and Chen Chao-Yang(陈朝阳) Preliminary analysis of resonance effect by Helmholtz–Schrödinger method 2010 Chin. Phys. B 19 100304

[1] Liao X, Ren X Z and Zhou Z G 2008 wxActa Phys. Sin.57 3949 (in Chinese)
[2] Zhang G F 2007 wxActa Phys. Sin.56 3693 (in Chinese)
[3] Yi Y X, Wang G P, Long Y B and Shan H 2003 wxActa Phys. Sin.52 604 (in Chinese)
[4] Maier L C Jr and Slater J C 1952 wxJ. Appl. Phys.23 68
[5] McDonald S W and Kaufman A N 1988 wxPhys. Rev. A37 3067
[6] Gokirmak A, Wu D H, Bridgewater J S A and Anlage S M 1998 wxRev. Sci. Instrum.69 3410
[7] Chung S H, Gokimak A, Wu D H, Bridgewater J S A, Ott E, Antonsen T M and Anlage S M 2000 wxPhys. Rev. Lett.85 2482
[8] Wu D H, Bridgewater J S A, Gokirmak A and Anlage S M 1998 wxPhys. Rev. Lett.81 2890
[9] Liu J B and Cai X P 2001 wxActa Phys. Sin.50 820 (in Chinese)
[10] Zheng X, Antonsen T M and Ott E 2006 wxElectromagnetics26 3
[11] Hupert J J and Ott G 1966 wxAm. J. Phys.34 260
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[4] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[5] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[6] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[7] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[8] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[9] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[10] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[11] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[12] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[13] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[14] Effect of kinetic ions on the toroidal double-tearing modes
Ruibo Zhang(张睿博), Lei Ye(叶磊), Yang Chen, Nong Xiang(项农), and Xiaoqing Yang(杨小庆). Chin. Phys. B, 2023, 32(2): 025203.
[15] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
No Suggested Reading articles found!