Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 019802    DOI: 10.1088/1674-1056/19/1/019802

New agegraphic dark energy as a rolling tachyon

Cui Jing-Lei, Zhang Li, Zhang Jing-Fei, Zhang Xin
Department of Physics, College of Sciences, Northeastern University, Shenyang 110004, China
Abstract  Combining the general relativity and the uncertainty relation in quantum mechanics, the energy density of quantum fluctuations of space-time can be viewed as dark energy. The so-called agegraphic dark energy model is just based on this viewpoint, in which the age of the universe is introduced as the length measure. Recently, the new agegraphic dark energy model was proposed, where the dynamical dark energy is measured by the conformal age of the universe. On the other hand, scalar-field dark energy models like tachyons are often regarded as an effective description of some underlying theory of dark energy. In this paper, we show that the new agegraphic dark energy can be described completely by a tachyon scalar-field. We thus reconstruct the potential and the dynamics of the tachyon scalar-field, according to the evolution of the new agegraphic dark energy.
Keywords:  new agegraphic dark energy      tachyon      reconstruction  
Received:  09 April 2009      Revised:  05 May 2009      Accepted manuscript online: 
PACS:  95.36.+x (Dark energy)  
  04.20.Gz (Spacetime topology, causal structure, spinor structure)  
  14.80.-j (Other particles (including hypothetical))  
  95.30.Cq (Elementary particle processes)  
  95.30.Sf (Relativity and gravitation)  
  98.80.Cq (Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10705041).

Cite this article: 

Cui Jing-Lei, Zhang Li, Zhang Jing-Fei, Zhang Xin New agegraphic dark energy as a rolling tachyon 2010 Chin. Phys. B 19 019802

[1] Riess A G et al.1998 Astron. J. 116 1009[ Perlmutter S et al. 1999 Astrophys. J. 517 565
[2] Tegmark M et al. 2004Phys. Rev.D 69 103501
[3] Spergel D N et al. 2003 Astrophys. J. Suppl. 148 175
[4] Padmanabhan T 2003 Phys. Rept. 380 235[Carroll S M 2003 arXiv:astro-ph/0310342[Bean R, Carroll S and Trodden M 2005 arXiv:astro-ph/0510059[Sahni V and Starobinsky A A 2000 Int.J. Mod. Phys. D 9 373 [Padmanabhan T 2005 Curr. Sci. 88 1057[Nobbenhuis S 2006 Found. Phys. 36 613[Copeland E J, Sami M and Tsujikawa S 2006 Int.J. Mod.Phys. D 15 1753[Albrecht A et al. 2006 arXiv:astro-ph/0609591[Trotta R and Bower R 2006 arXiv:astro-ph/0607066[Kamionkowski M 2007 arXiv:0706.2986 [astro-ph][Ratra B and Vogeley M S 2008 Publ. Astron. Soc. Pac. 120 235[Linder E V 2008 Am. J. Phys. 76 197[Steinhardt P J 1997 Critical Problems in Physics (Princeton:Princeton University Press)
[5] Peebles P J E and Ratra B 1988 Astrophys. J. 325 L17[ Ratra B and Peebles P J E 1988Phys. Rev.D 37 3406[ Wetterich C 1988 Nucl. Phys. B 302 668[ Frieman J A, Hill C T, Stebbins A and Waga I 1995 Phys.Rev.Lett. 75 2077[ Turner M S and White M J 1997 Phys. Rev.D 56 4439[ Liddle A R and Scherrer R J 1999 Phys. Rev.D 59 023509[ Zlatev I, Wang L M and Steinhardt P J 1999 Phys.Rev.Lett. 82 896[ Steinhardt P J, Wang L M and Zlatev I 1999 Phys. Rev.D 59 123504
[6] Armendariz-Picon C, Mukhanov V F and Steinhardt P J 2000 Phys.Rev.Lett. 85 4438[ Armendariz-Picon C, Mukhanov V F and Steinhardt P J 2001 Phys. Rev.D 63 103510
[7] Caldwell R R 2002 Phys. Lett. B 545 23
[8] Sen A 2002 J. High Energy Phys. 0207 065
[9] Feng B, Wang X L and Zhang X M 2005 Phys. Lett. B 607 35[ Guo Z K, Piao Y S, Zhang X M and Zhang Y Z 2005 Phys. Lett. B 608 177[ Zhang X 2005 Commun. Theor. Phys. 44 762
[10] Arkani-Hamed N, Cheng H C, Luty M A and Mukohyama S 2004 J. High Energy Phys. 0405 074[ Mukohyama S 2006 J. Cosmol. Astropart. Phys. 0610 011[ Piazza F and Tsujikawa S 2004 J. Cosmol. Astropart. Phys. 0407 004[ Zhang J, Zhang X and Liu H 2008 Mod. Phys. Lett. A 23 139
[11] Amendola L 2000 Phys. Rev.D 62 043511[ Comelli D, Pietroni M and Riotto A 2003 Phys. Lett. B 571 115[ Zhang X 2005 Mod. Phys. Lett. A 20 2575[ Zhang X 2005 Phys. Lett. B 611 1
[12] Deffayet C, Dvali G R and Gabadadze G 2002 Phys. Rev.D 65 044023[ Sahni V and Shtanov Y 2003 J. Cosmol. Astropart. Phys. 0311 014
[13] Kamenshchik A Y, Moschella U and Pasquier V 2001 Phys. Lett. B 511 265[ Bento M C, Bertolami O and Sen A. A 2002 Phys. Rev.D 66 043507[ Zhang X, Wu F Q and Zhang J 2006 J. Cosmol. Astropart. Phys. 0601 003
[14] Kachru S, Kallosh R, Linde A and Trivedi S P 2003 Phys. Rev. D 68 046005
[15] Li M 2004 Phys. Lett. B 603 1
[16] Zhang X and Wu F Q 2005 Phys. Rev.D 72 043524[ Zhang X and Wu F Q 2007 Phys. Rev.D 76 023502[ Huang Q G and Gong Y G 2004 J. Cosmol. Astropart. Phys. 0408 006[ Chang Z, Wu F Q and Zhang X 2006 Phys. Lett. B 633 14[ Shen J Y, Wang B, Abdalla E and Su R K 2005 Phys. Lett. B 609 200[ Yi Z L and Zhang T J 2007 Mod. Phys. Lett. A 22 41[ Ma Y Z, Gong Y and Chen X 2009 Europ. Phys.J. C 60 303[ Wu Q, Gong Y, Wang A and Alcaniz J S 2008 Phys. Lett. B 659 34[ Zhang X 2005 Int.J. Mod. Phys. D 14 1597[ Setare M R, Zhang J and Zhang X 2007 J. Cosmol. Astropart. Phys. 0703 007[ Zhang J, Zhang X and Liu H 2008 Phys. Lett. B 659 26[ Zhang J, Zhang X and Liu H 2007 Europ. Phys.J. C 52 693
[17] Cai R G 2007 Phys. Lett. B 657 228
[18] Wei H and Cai R G 2008 Phys. Lett. B 660 113
[19] Zhang X 2007 Phys. Lett. B 648 1[ Zhang X 2006 Phys. Rev.D 74 103505[ Zhang J, Zhang X and Liu H 2007 Phys. Lett. B 651 84[ Ma Y Z and Zhang X 2008 Phys. Lett. B 661 239[ Cruz N, Gonzalez-Diaz P F, Rozas-Fernandez A and Sanchez G 2008 arXiv:0812.4856 [gr-qc][ Neupane I P 2007 Phys. Rev.D 76 123006[ Zhang J, Zhang X and Liu H 2008 Europ. Phys.J. C 54 303[ Wu J P, Ma D Z and Ling Y 2008 Phys. Lett. B 663 152[ Zhang X 2009 Phys. Rev.D 79 103509[ Feng C J 2009 Phys. Lett. B 672 94[ Wu X and Zhu Z H 2008 Phys. Lett. B 660 293[ Setare M R 2007 Phys. Lett. B 648 329
[20] Károlyházy F 1966 II Nuovo Cimento A 42 390[Károlyházy F, Frenkel A and Lukács B 1982 Physics as Natural Philosophy (Cambridge: MIT Press)[Károlyházy F, Frenkel A and Lukács B 1986 Quantum Concepts in Space and Time (Oxford: Clarendon Press)
[21] Maziashvili M 2007 Int.J. Mod. Phys. D 16 1531
[22] Maziashvili M 2007 Phys. Lett. B 652 165
[23] Wei H and Cai R G 2008 Phys. Lett. B 663 1
[24] Gibbons G W 2002 Phys. Lett. B 537 1
[25] Mazumdar A, Panda S and Perez-Lorenzana A 2001 Nucl. Phys. B 614 101[ Feinstein A 2002 Phys. Rev.D 66 063511[ Piao Y S, Cai R G, Zhang X M and Zhang Y Z 2002 Phys. Rev.D 66 121301
[26] Padmanabhan T 2002 Phys. Rev.D 66 021301[ Bagla J S, Jassal H K and Padmanabhan T 2003 Phys. Rev.D 67 063504[ Abramo L R W and Finelli F 2003 Phys. Lett. B 575 165[ Aguirregabiria J M and Lazkoz R 2004 Phys. Rev.D 69 123502[ Guo Z K and Zhang Y Z 2004 J. Cosmol. Astropart. Phys. 0408 010[ Copeland E J, Garousi M R, Sami M and Tsujikawa S 2005 Phys. Rev.D 71 043003
[27] Wei H 2009 Europ. Phys.J. C 60 449
[1] An approach to gas sensors based on tunable diode laser incomplete saturated absorption spectra
Wei Nie(聂伟), Zhen-Yu Xu(许振宇), Rui-Feng Kan(阚瑞峰), Mei-Rong Dong(董美蓉), and Ji-Dong Lu(陆继东). Chin. Phys. B, 2021, 30(6): 064213.
[2] Model predictive inverse method for recovering boundary conditions of two-dimensional ablation
Guang-Jun Wang(王广军), Ze-Hong Chen(陈泽弘), Guang-Xiang Zhang(章广祥), and Hong Chen(陈红). Chin. Phys. B, 2021, 30(3): 030203.
[3] Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers
Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 097402.
[4] Inverse Ising techniques to infer underlying mechanisms from data
Hong-Li Zeng(曾红丽), Erik Aurell. Chin. Phys. B, 2020, 29(8): 080201.
[5] Shape reconstructions and morphing kinematics of an eagle during perching manoeuvres
Di Tang(唐迪), Dawei Liu(刘大伟), Hai Zhu(朱海), Xipeng Huang(黄喜鹏), Zhongyong Fan(范忠勇), Mingxia Lei(雷鸣霞). Chin. Phys. B, 2020, 29(2): 024703.
[6] An efficient inverse approach for reconstructing time- and space-dependent heat flux of participating medium
Shuang-Cheng Sun(孙双成), Guang-Jun Wang(王广军), and Hong Chen(陈红)$. Chin. Phys. B, 2020, 29(11): 110202.
[7] Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates
Yu-Jiao Jiang(江昱佼), Yue-Ying Liang(梁玥瑛), Yi-Tan Gao(高亦谈), Kun Zhao(赵昆), Si-Yuan Xu(许思源), Ji Wang(王佶), Xin-Kui He(贺新奎), Hao Teng(滕浩), Jiang-Feng Zhu(朱江峰), Yun-Lin Chen(陈云琳), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(1): 013206.
[8] Investigation and optimization of sampling characteristics of light field camera for flame temperature measurement
Yudong Liu(刘煜东), Md. Moinul Hossain, Jun Sun(孙俊), Biao Zhang(张彪), Chuanlong Xu(许传龙). Chin. Phys. B, 2019, 28(3): 034207.
[9] Growth of high-quality perovskite (110)-SrIrO3 thin films using reactive molecular beam epitaxy
Kai-Li Zhang(张凯莉), Cong-Cong Fan(樊聪聪), Wan-Ling Liu(刘万领), Yu-Feng Wu(吴宇峰), Xiang-Le Lu(卢祥乐), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Zhong-Hao Liu(刘中灏), Da-Wei Shen(沈大伟). Chin. Phys. B, 2018, 27(8): 088103.
[10] Calibration and data restoration of light field modulated imaging spectrometer
Li-Juan Su(苏丽娟), Qiang-Qiang Yan(严强强), Yan Yuan(袁艳), Shi-Feng Wang(王世丰), Yu-Jian Liu(刘宇健). Chin. Phys. B, 2018, 27(8): 080702.
[11] Towards dynamic structure of biological complexes at atomic resolution by cryo-EM
Kai Zhang(张凯). Chin. Phys. B, 2018, 27(6): 066801.
[12] Computing methods for icosahedral and symmetry-mismatch reconstruction of viruses by cryo-electron microscopy
Bin Zhu(朱彬), Lingpeng Cheng(程凌鹏), Hongrong Liu(刘红荣). Chin. Phys. B, 2018, 27(5): 056802.
[13] High-resolution electron microscopy for heterogeneous catalysis research
Yong Zhu(朱勇), Mingquan Xu(许名权), Wu Zhou(周武). Chin. Phys. B, 2018, 27(5): 056804.
[14] Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera
Guannan Liu(刘冠楠), Dong Liu(刘冬). Chin. Phys. B, 2018, 27(5): 054401.
[15] Terahertz two-pixel imaging based on complementary compressive sensing
Yuye Wang(王与烨), Yuchen Ren(任宇琛), Linyu Chen(陈霖宇), Ci Song(宋词), Changzhao Li(李长昭), Chao Zhang(张超), Degang Xu(徐德刚), Jianquan Yao(姚建铨). Chin. Phys. B, 2018, 27(11): 114204.
No Suggested Reading articles found!