Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 010701    DOI: 10.1088/1674-1056/19/1/010701
GENERAL Prev   Next  

Thermal and mechanical characterizations of a substrate-free focal plane array

Cheng Teng(程腾)a), Zhang Qing-Chuan(张青川) a)†, Chen Da-Peng(陈大鹏)b), Shi Hai-Tao(史海涛)a), Gao Jie(高杰)a), Qian Jian(钱剑)a), and Wu Xiao-Ping(伍小平)a)
a CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230027, China; b Institute of Microelectronics, Chinese Academy of Science, Beijing 100029, China
Abstract  We propose a substrate-free focal plane array (FPA) in this paper. The solid substrate is completely removed, and the microcantilevers extend from a supporting frame. Using finite element analysis, the thermal and mechanical characterizations of the substrate-free FPA are presented. Because of the large decrease in thermal conductance, the supporting frame is temperature dependent, which brings out a unique feature: the lower the thermal conductance of the supporting frame is, the higher the energy conversion efficiency in the substrate-free FPA will be. The results from the finite element analyses are consistent with our measurements: two types of substrate-free FPAs with pixel sizes of 200× 200 and 60 × 60 μm2 are implemented in the proposed infrared detector. The noise equivalent temperature difference (NETD) values are experimentally measured to be 520 and 300~mK respectively. Further refinements are considered in various aspects, and the substrate-free FPA with a pixel size of 30 × 30 μm2 has a potential of achieving an NETD value of 10 mK.
Keywords:  focal plane array      infrared detectors      substrate-free      uncooled  
Received:  20 March 2009      Revised:  18 May 2009      Accepted manuscript online: 
PACS:  07.57.Kp (Bolometers; infrared, submillimeter wave, microwave, and radiowave receivers and detectors)  
  02.70.Dh (Finite-element and Galerkin methods)  
  07.10.Cm (Micromechanical devices and systems)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10732080 and 10627201), and the National Basic Research Program of China (Grant No. 2006CB300404).

Cite this article: 

Cheng Teng(程腾), Zhang Qing-Chuan(张青川), Chen Da-Peng(陈大鹏), Shi Hai-Tao(史海涛), Gao Jie(高杰), Qian Jian(钱剑), and Wu Xiao-Ping(伍小平) Thermal and mechanical characterizations of a substrate-free focal plane array 2010 Chin. Phys. B 19 010701

[1] Lloyd J M 1975 Thermal Imaging Systems (New York: Plenum Press)
[2] Miller J L 1994 Principles of Infrared Technology (New York: Cluwer Academic Pub)
[3] Rogalski A 2003 Infrared Detectors: Status and TrendsIn: Prog. Quant. Electron. 27 p59
[4] Li B 2004 Sensor Actuat. A 112 351
[5] Boisen A, Thaysen J, Jensenius H and Hansen O 2000 Ultramicroscopy 82 11
[6] Gotszalk T, Grabiec P and Rangelow I W 2000 Ultramicroscopy 82 39
[7] Manalis S R, Minne S C, Quate C F, Yaralioglu G G and Atalar A 1997 Appl. Phys. Lett. 70 3311
[8] Perazzo T, Mao M, Kwon O and Majumdar A 1999 Appl. Phys. Lett. 74 3567
[9] Zhao Y, Mao M, Horowitz R, Majumdar A, Varesi J, Norton P and Kitching J 2002 J. Microelectromech. S 11 136
[10] Grbovic D, Lavrik N V, Datskos P G, Forrai D, Nelson E, Devitt J and McIntyre B 2006 Appl. Phys. Lett. 89 073118
[11] Pan L, Zhang Q C, Wu X P, Duan Z H, Chen D P, Wang W B and Guo Z Y 2004 J. Experimental Mechanics 19 403 (in Chinese)
[12] Li C B, Jiao B B, Shi S L, Chen D P, Ye T C, Zhang Q C, Guo Z Y, Dong F L and Miao Z Y 2006 Meas. Sci. Technol. 17 1981
[13] Miao Z Y, Zhang Q C, Chen D P, Guo Z Y, Dong F L, Xiong Z M, Wu X P, Li C B and Jiao B B 2007 Ultramicroscopy 107 640
[14] Dong F L, Zhang Q C, Chen D P, Miao Z Y, Xiong Z M, Guo Z Y, Li C B, Jiao B B and Wu X P 2008 Ultramicroscopy 108 579
[15] Kruse P W 1997 Principles of Uncooled Infrared Focal Plane Arrays In: Semiconduct. Semimet. 47 p17
[16] Zhao Y 2002 Optomechnical Uncooled Infrared Imaging System Ph. D Thesis, University of California, Berkeley, USA
[17] Xiong Z M, Zhang Q C, Gao J, Wu X P, Chen D P and Jiao B B 2007 J. Appl. Phys. 02 113524
[18] Wood R A 1997 Monolithic Silicon Microbolometer Arrays In: Semiconduct. Semimet. 47 p43
[19] Goodman J W 2006 Introduction to Fourier Optics 2nd Ed. (New York: McGRAW-HILL) p139
[20] Duan Z H, Zhang Q C, Wu X P, Pan L, Chen D P, Wu X P and Guo Z Y 2003 Chin. Phys. Lett. 20 2130
[21] Miao Z Y, Zhang Q C, Guo Z Y, Wu X P and Chen D P 2007 Opt. Lett. 32 594
[22] Grbovic D, Lavrik N V, Rajic S and Datskos P G 2008 J. Appl. Phys. 104 051508
[1] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
[2] Short-wave infrared InGaAs photodetectors and focal plane arrays
Yong-Gang Zhang(张永刚), Yi Gu(顾溢), Xiu-Mei Shao(邵秀梅), Xue Li(李雪), Hai-Mei Gong(龚海梅), Jia-Xiong Fang(方家熊). Chin. Phys. B, 2018, 27(12): 128102.
[3] Surface plasmon-enhanced dual-band infrared absorber for VOx-based microbolometer application
Qi Li(李琦), Bing-qiang Yu(于兵强), Zhao-feng Li(李兆峰), Xiao-feng Wang(王晓峰), Zi-chen Zhang(张紫辰), Ling-feng Pan(潘岭峰). Chin. Phys. B, 2017, 26(8): 085202.
[4] Etching mask optimization of InAs/GaSb superlattice mid-wavelength infared 640×512 focal plane array
Hong-Yue Hao(郝宏玥), Wei Xiang(向伟), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Xi Han(韩玺), Yao-Yao Sun(孙瑶耀), Dong-Wei Jiang(蒋洞微), Yu Zhang(张宇), Yong-Ping Liao(廖永平), Si-Hang Wei(魏思航), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2017, 26(4): 047303.
[5] Very long wavelength infrared focal plane arrays with 50% cutoff wavelength based on type-II InAs/GaSb superlattice
Xi Han(韩玺), Wei Xiang(向伟), Hong-Yue Hao(郝宏玥), Dong-Wei Jiang(蒋洞微), Yao-Yao Sun(孙姚耀), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2017, 26(1): 018505.
No Suggested Reading articles found!