Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 010301    DOI: 10.1088/1674-1056/19/1/010301
GENERAL Prev   Next  

Lie symmetries and conserved quantities for a two-dimensional nonlinear diffusion equation of concentration

Zhao Li(赵丽)a), Fu Jing-Li(傅景礼)a)†, and Chen Ben-Yong(陈本永)b)
a Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China; b Institute of Mechanical and Automation Control Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  The Lie symmetries and conserved quantities of a two-dimensional nonlinear diffusion equation of concentration are considered. Based on the invariance of the two-dimensional nonlinear diffusion equation of concentration under the infinitesimal transformation with respect to the generalized coordinates and time, the determining equations of Lie symmetries are presented. The Lie groups of transformation and infinitesimal generators of this equation are obtained. The conserved quantities associated with the nonlinear diffusion equation of concentration are derived by integrating the characteristic equations. Also, the solutions of the two-dimensional nonlinear diffusion equation of concentration can be obtained.
Keywords:  Lie symmetry      conserved quantity      nonlinear      diffusion equation of concentration  
Received:  29 May 2009      Revised:  10 August 2009      Accepted manuscript online: 
PACS:  05.60.-k (Transport processes)  
  02.20.Qs (General properties, structure, and representation of Lie groups)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10672143 and 60575055).

Cite this article: 

Zhao Li(赵丽), Fu Jing-Li(傅景礼), and Chen Ben-Yong(陈本永) Lie symmetries and conserved quantities for a two-dimensional nonlinear diffusion equation of concentration 2010 Chin. Phys. B 19 010301

[1] Olver P 1993 Applications of Lie Groups to Differential Equations (New York: Spriger)
[2] Ovisiannikov L V 1982 Group Analysis of Difference Equations (New York: Academic)
[3] Ibragimov N H 1985 Transformation Groups Applied to Mathematical Physics (Boton: D. Reidel Publishing Company)
[4] Bluman G W and Kumei S 1989 Symmetries of Differential Equations (Berlin: Springer)
[5] Hydon P 1999 Symmetry Methods for Ordinary Differential Equations (Cambridge: Cambridge University Press)
[6] Mei F X 1999 Applications of Lie Group and Lie Algebra to Constrained Mechanical Systems (Beijing: Science Press)
[7] Mei F X 1992 Appl. Math. Mech. 13 165
[8] Guo Y X, Jiang L Y and Yu Y 2001 Chin. Phys. 10 181
[9] Shang M, Guo Y X and Mei F X 2007 Chin. Phys. 16 292
[10] Zhang H B, Chen L Q, Gu S L and Liu C Z 2007 Chin. Phys. 16 582
[11] Zhang H B, Chen L Q and Liu R W 2005 Chin. Phys. 14 888
[12] Zhang H B, Chen L Q and Liu R W 2005 Chin. Phys. 14 1063
[13] Zhang H B 2002 Chin. Phys. 11 1
[14] Zhang H B and Gu S L 2002 Chin. Phys. 11 765
[15] Chen X W, Shang M and Mei F X 2001 Chin. Phys. 10 997
[16] Fang J H 2002 Chin. Phys. 11 313
[17] Chen X W and Li Y M 2003 Chin. Phys. 12 936
[18] Zhang Y, Shang M and Mei F X 2000 Chin. Phys. 9 401
[19] Lou Z M 2006 Chin. Phys. 15 891
[20] Ge W K 2007 Acta Phys. Sin. 56 2079 (in Chinese)
[21] Fu J L and Chen L Q 2004 Phys. Lett. A 331 138
[22] Fu J L, Chen L Q, Salnalor Jiménez and Tang Y F 2006 Phys. Lett. A 385 5
[23] Fu J L and Chen L Q 2003 Phys. Lett. A 317 255
[24] Fu J L and Chen L Q 2004 Mech. Res. Commun. 31 9
[25] Fu J L and Chen L Q 2004 Phys. Lett. A 324 95
[26] Li Y C, Zhang Y and Liang J H 2002 Acta Phys. Sin. 51 2186 (in Chinese)
[27] Jia L Q, Cui J C, Zhang Y Y and Luo S K 2009 Acta Phys. Sin. 58 16 (in Chinese)
[28] Clarkson P A and Mansfield E L 1994 Physical D 70 250
[29] Ames W F 1972 Nonlinear Partial Differential Equations in Engineering vol.I (New York: Academic)
[30] Barenblatt G I 1952 Prikl. Mekh. 16 67
[31] Cherniha R and Serov M 1998 Europ. J. Appl. Math. 9 527
[32] Cimpoiasu R and Constantinesu R 2007 Nonlinear Analysis 68 2261
[1] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[4] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[5] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[6] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[7] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[8] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[9] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[10] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[11] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[12] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[13] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[14] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[15] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
No Suggested Reading articles found!