Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 010205    DOI: 10.1088/1674-1056/19/1/010205
GENERAL Prev   Next  

Wavelet-based multifractal analysis of DNA sequences by using chaos-game representation

Han Jia-Jing(韩佳静) and Fu Wei-Juan (符维娟)
Surface Physics Laboratory (National Key Laboratory) and Physics Department, Fudan University, Shanghai 200433, China
Abstract  Chaos game representation (CGR) is proposed as a scale-independent representation for DNA sequences and provides information about the statistical distribution of oligonucleotides in a DNA sequence. CGR images of DNA sequences represent some kinds of fractal patterns, but the common multifractal analysis based on the box counting method cannot deal with CGR images perfectly. Here, the wavelet transform modulus maxima (WTMM) method is applied to the multifractal analysis of CGR images. The results show that the scale-invariance range of CGR edge images can be extended to three orders of magnitude, and complete singularity spectra can be calculated. Spectrum parameters such as the singularity spectrum span are extracted to describe the statistical character of DNA sequences. Compared with the singularity spectrum span, exon sequences with a minimal spectrum span have the most uniform fractal structure. Also, the singularity spectrum parameters are related to oligonucleotide length, sequence component and species, thereby providing a method of studying the length polymorphism of repeat oligonucleotides.
Keywords:  chaos game representation (CGR)      multifractal      wavelet transform modulus maxima(WTMM)      singularity spectrum  
Received:  24 March 2009      Revised:  09 June 2009      Accepted manuscript online: 
PACS:  87.14.G- (Nucleic acids)  
  05.45.Df (Fractals)  
  87.15.Cc (Folding: thermodynamics, statistical mechanics, models, and pathways)  
Fund: Project supported by the Science and Technology Commission of Shanghai Municipality (Grant No. 05DZ19747) and the National Basic Research Program of China (Grant No. 2006CB504509).

Cite this article: 

Han Jia-Jing(韩佳静) and Fu Wei-Juan (符维娟) Wavelet-based multifractal analysis of DNA sequences by using chaos-game representation 2010 Chin. Phys. B 19 010205

[1] Jeffrey H 1990 Nucl. Acids Res. 18 2163
[2] Patrick J Deschavanne, Alain Giron, Joseph Vilain, Guillaume Fagot and Bernard Fertil 1999 Mol. Biol. Evol. 16 1391
[3] Almeida J, Carrico J, Maretzek A, Noble P A and Fletcher M 2001 Bioinformatics 17 429
[4] Wang Y W, Hill K, Singb S and Kari L 2005 Gene. 346 173
[5] Milan R 2008 Chem. Phys. Lett. 456 84
[6] Jie F and Tianming W 2008 Chem. Phys. Lett. 454 355
[7] Fiser A, Tusnady G E and Simon I 1994 J. Mol. Graphics 12 302
[8] Yu Z G, Anh V and Lau K S 2004 J. Theor. Biology 226 341
[9] Yang J Y, Peng Z L, Yu Z G, Zhang R J, Anh V and Wang D S 2009 J. Theor. Biology 257 618
[10] Evertsz C J G and Mandelbrot B B 1992 Multifractal Measures In: Peitgen H, Juergens H and Saupe D (eds.) Chaos and Fractals (Berlin: Springer) p921
[11] Stanley H E and Meakin P 1998 Nature 335 405
[12] Gutiérrez J, Rodríguez M and Abramson G 2001 Physica A 300 271
[13] Yu Z G, Anh V and Lau K S 2001 Physica A 301 351
[14] Yu Z G, Anh V and Lau K S 2001 Phys. Rev. E 64 031903
[15] Yu Z G, Anh V and Lau K S 2003 Phys. Rev. E 68 021913
[16] Fu W J, Wang Y Y and Lu D R 2005 The 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 17-18 4783
[17] Fu W J, Wang Y Y and Lu D R 2007 J. Biomed. Engineer. 24 522 (in Chinese)
[18] Muzy J F, Bacry E and Arnéodo A 1991 Phys. Rev. Lett. 67 3515
[19] Arnéodo A, Decoster N and Roux S G 2000 Europ. Phys. J. B 15 567
[20] Camilo Rodrigues N, Kevin B and Adrienn C 2004 Physica A 344 5806
[21] Mallat S and Zhong S 1992 IEEE Trans. Pattern Anal. Mach. Intell. 14 710
[1] Multifractal analysis of the software evolution in software networks
Meili Liu(刘美丽), Xiaogang Qi(齐小刚), and Hao Pan(潘浩). Chin. Phys. B, 2022, 31(3): 030501.
[2] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[3] Detection of meso-micro scale surface features based on microcanonical multifractal formalism
Yuanyuan Yang(杨媛媛), Wei Chen(陈伟), Tao Xie(谢涛), William Perrie. Chin. Phys. B, 2018, 27(1): 010502.
[4] Multifractal modeling of the production of concentrated sugar syrup crystal
Sheng Bi(闭胜), Jianbo Gao(高剑波). Chin. Phys. B, 2016, 25(7): 070502.
[5] Multifractal analysis of white matter structural changes on 3D magnetic resonance imaging between normal aging and early Alzheimer's disease
Ni Huang-Jing (倪黄晶), Zhou Lu-Ping (周泸萍), Zeng Peng (曾彭), Huang Xiao-Lin (黄晓林), Liu Hong-Xing (刘红星), Ning Xin-Bao (宁新宝), the Alzheimer's Disease Neuroimaging Initiative. Chin. Phys. B, 2015, 24(7): 070502.
[6] Multifractal analysis of complex networks
Wang Dan-Ling (王丹龄), Yu Zu-Guo (喻祖国), Anh V. Chin. Phys. B, 2012, 21(8): 080504.
[7] Relationships of exponents in multifractal detrended fluctuation analysis and conventional multifractal analysis
Zhou Yu(周煜), Leung Yee(梁怡), and Yu Zu-Guo(喻祖国) . Chin. Phys. B, 2011, 20(9): 090507.
[8] Early-warning signals for an outbreak of the influenza pandemic
Ren Di(任迪) and Gao Jie(高洁) . Chin. Phys. B, 2011, 20(12): 128701.
[9] Protein structural classification and family identification by multifractal analysis and wavelet spectrum
Zhu Shao-Ming(朱少茗), Yu Zu-Guo(喻祖国), and Ahn Vo. Chin. Phys. B, 2011, 20(1): 010505.
[10] Chaos game representation of functional protein sequences, and simulation and multifractal analysis of induced measures
Yu Zu-Guo(喻祖国), Xiao Qian-Jun(肖前军), Shi Long(石龙), Yu Jun-Wu(余君武), and Vo Anh. Chin. Phys. B, 2010, 19(6): 068701.
[11] Fractional Fourier transform of Cantor sets: further numerical study
Gao Qiong(高穹), Liao Tian-He(廖天河), and Cui Yuan-Feng(崔远峰). Chin. Phys. B, 2008, 17(6): 2018-2022.
[12] Multifractal analysis of the Yellow River flows
Zang Bao-Jiang(臧保将) and Shang Peng-Jian(商朋见). Chin. Phys. B, 2007, 16(3): 565-569.
[13] Fractals in DNA sequence analysis
Yu Zu-Guo (喻祖国), Vo Anh, Gong Zhi-Min (龚志民), Long Shun-Chao (龙顺湖). Chin. Phys. B, 2002, 11(12): 1313-1318.
[14] MULTIPLE CLUSTER GROWTH OF ULTRA-THIN FILMS WITH ANISOTROPIC EDGE DIFFUSION
Wang Dai-mu (王戴木), Wu Zi-qin (吴自勤). Chin. Phys. B, 2001, 10(1): 46-51.
No Suggested Reading articles found!